2017年6月25日 (日)

7MHz D級アンプ QRO計画 7(200W)

<カテゴリ AM送信機(PWM方式)

薄膜高周波抵抗を使った250Wのダミー抵抗が断線し、エージングは頓挫していましたが、ヤクオクで同等スペックの抵抗が売りに出ていましたので、さっそくこれをゲット。

205nb_dummy

Rf_250w_swr_gr_4

 

左上が入手した250W薄膜高周波抵抗を放熱板に貼り付けた状態。右上はこのダミーをCAA-500mk2でSWRを測定した結果です。HFはSWR1.0、435MHzでもSWR1.3になっています。 とりあえず、100Wで10分程度慣らし運転して異常ありませんでしたので、当ダミーは今後AM送信機のエージング試験には使わない事にします。

エージング用はもう少し乱暴に扱っても壊れにくい、オイル冷却のダミーロードを作る事にしました。

ダミーロードができたので、送信機本体も200W対応に向け改造しました。

Amtx200wv2 

上はその改造後のシャーシです。 まず、シャーシの真ん中で空気を掻き混ぜていたファンをバックパネルに移動し、内部の熱された空気を外へ吸い出すようにしました。 その関係で変調回路のLPFは元ファンの有った場所へ移動です。

TDKのLINEフィルターは効果的に動作していましたが、定格電流が5Aでしたので、140Wでのエージングで、かなり熱くなっていました。 そこで、このフィルターを10Aタイプに変更しました。サイズが大きくなったので、電解コンデンサは移動してあります。 このフィルターは、接続したDC電流計が正しく動作するかどうかでその効果は確認できます。もし、挿入した電流計が異常値を示すようなら、決まって高周波が漏えいし、色々な障害を生じさせる事になります。

電源として使っているTS-930Sには44000uFの電解コンデンサが使われており、これに9400uFのコンデンサをパラに追加していましたが、変調のピークをカバーするほどの効果は有りませんでした。 そこで、今回30000uFのコンデンサを追加しました。 ピーク電力の増加を期待したいところです。

ケースの底板に穴を明け、ここから外気を吸い込み、後方のファンへ抜けるようにしました。

Amtx200wv3

Amtx140wasing

そして、上は、強制空冷状態で140W連続30分のエージング風景です。ケースの天板は手の平をずうと押し付けていられるほど温度が下がり、この後、2時間続けても問題なしのレベルまで改善しました。

Amtx200wpower

30Vの電源を40Vにアップする為、12V 30Aのスイッチング電源を手配しました。 これをTS-930Sの電源にシリーズに接続して使います。 現状のままでは42Vになってしまい、12Vを作るDC/DCの最高電圧40Vをオーバーしますので、TS-930Sの電源の電圧調整部分を改造し、26Vから30Vまでを可変できるようにしました。 またAC/DC自身も10Vから14Vまで可変できますので、両方の電圧を調整して最大40Vに設定しています。 

まず、30V+10Vで確かに200Wでるのか確認しました。 

Acdc12vpower

200woutput

左上が臨時に追加した12V AC/DCです。 これで40Vの電圧を確保して200Wの出力を得たのが右上のメーターです。 このAC/DCは、アマゾンで2300円くらいで販売されていました。 取説なし、電源コードなし、その上、初期不良で電源ONせずというシロモノでしたが、110/220Vの切り替えSWをカチカチやったら、時々動きます。

Acdcsw

原因は左の写真のように。スイッチが傾いて挿入されており、左側の端子が基板とつながっておらず、かろうじて裏の半田の上に乗っているだけという状態でした。 中を開け一度、ハンダを吸い上げ、スイッチが自由に動く状態にして、きっちりと基板に密着させハンダ付けしました。 また、2か所でアルミ板を放熱板に使っていますが、FETとアルミ板の間はシリコンラバーが挟んでありましたが、アルミ板と外側のアルミケースとの間にはなにもなく、熱伝導が心配になりましたので、シリコングリスを塗り込んでおきました。 動き出せば、コスパは最高です。

 AC/DCの右端に写っているのは、定格5AのAC LINEフィルターです。 これを付けていると、少なくとも7195KHzでのノイズは気になりません。

200w_dc40v_2

200wout630hz_2

 左上が200W送信時の電流値と変調度、右上は630Hz信号による最大変調度の波形です。 電流が常に9Aを超えるようなら、このメーターの目盛をMAX15Aに作る変えるつもりです。

配線図 AMTX_200W_0.pdfをダウンロード

電源から最大パワーを得るには26V+14V=40Vが良さそうですので、この電圧配分でエージングテストをする事にします。

200w9a

実際にテストしたのは、26V+12V=38Vで行いました。 スタンバイ状態で38Vですが、200W送信時には37.2Vまで下がります。

200W出力時の電流は8.8Aくらいです。

ドライバー段の電流を差し引いた状態でのPWM変調回路込みの終段能率は75%くらいです。 特に良い訳ではありませんが、200Wで20分のエージングテストもクリアーしましたので、これから、ダミーロードを心配しながら2時間エージングにトライしてみます。

心配していました、ピーク電力ですが以下のようになりました。

200wcw_2

200w95mod_2

 

左上は200W無変調キャリアだけです。右上は、630Hzのピークがクリップするまで変調度を上げた状態です。オシロの目盛からピーク値は2倍ではなく1.8倍くらいですので、ピーク電力は650Wくらいです。

次に、音楽ソースで確認しました。

Carir200wMusic200w

同じように左が無変調、右がボーカルの入った音楽ですが、ピークは2倍になっております。オーディオのミュージックパワーと同じように、正弦波でない、音声信号では、ピークで800Wは出ているようです。

このミュージックパワーを確認しながらエージングを継続し、約30分経過した時点で、はじける音がして、出力が無くなり、電流も1A以下になってしまいました。 オシロで各波形をチェックすると、終段のゲートドライブ電圧が極端に小さくなっています。また、終段のゲートもドレインと同電位まで上昇しているFETもあります。 各素子を回路から切り離し、それぞれチェックしたところ、

Q2のドレインソース間がショート状態。

Q4,Q5,Q9,Q10,Q11,Q12の内、4本がゲートソース間ショート。

ゲートの1Ω抵抗も6本中4本断線。

断線した1Ωは黒焦げになっていました。 この抵抗に流れる電流はゲート容量をチャージする電流で、ピーク12Vくらいの電圧がかかりますので、単純計算でピーク12Aとなります。実際は回路のインピーダンスなどの影響で、数Aと考えられます、それでもピークで数Wもかかっている事になります。 そこに1/10Wのチップ抵抗を使ったのが原因のようです。 この6本のゲート抵抗が少しずつ断線し、残ったFETに負荷が集中した結果、終段のFET6個中4個が壊れた様です。 また、ゲートとソースがショートした事で、ドライバー段のQ2も壊れたと推察されます。

ここで、インターネットで海外の情報を調べると、皆さん2Wくらいの抵抗を使っているようです。あいにく、2W1Ωの抵抗は持ち合わせしていませんので、とりあえず1/10W 2.4Ωを4個パラにしてしのぐ事にしました。 終段FETの在庫も無くなりましたので、この抵抗も一緒に手配だけはしておこうと思います。

200wtest

修理完了して、200Wのエージングを再開しました。 左は、1リットルのダミーロードを3リットル缶に水を入れ、熱容量を大きくした上で、扇風機で仰ぎながらエージングしている風景です。

そして、約30分で、またも、出力が出なくなりました。 直接の原因は終段のSTF17NF25の1石が全端子ショート状態となり、これにより、他の5石のFETのゲートドライブが停止し、電流が流れなくなったものでした。 どうやら熱破壊です。 ファイナルステージの放熱板は、指を当てていられないほど熱くなっていました。 ファンを放熱板から離し、後方へ移動させたのがいけなかったようです。 そして、この熱で一番弱いFETが死んだのでしょう。

対策はファンを追加するか、STF17NF25モールド品からドレインむき出しのSTP17NF25に変えるかです。 ファン追加は構造の大変更を伴いますので、FETを変更する事にしました。 そして部品手配が出来るまではお預けとなりました。

 

7MHz D級アンプ QRO計画 8 (200Wつづき)へ続く

 

INDEXに戻る

2017年6月24日 (土)

オイル冷却ダミーロードの製作

200WのAM送信機の製作を行っていますが、200W連続印加可能なダミー抵抗が無く、エージングができていません。 そこで、金属皮膜抵抗を使ったオイル冷却のダミー抵抗を作る事にしました。

材料は200Ω 5Wの金属皮膜抵抗16本、厚さ0.3mmの銅板、ペンキ用の1リットル空き缶、Mコネクタ、BNCコネクタなどです。

80wdummydraw

いつものようにJW-CADで抵抗を円筒状に並べる為、寸法を決めながら作図し、その図面を銅板の上に糊で貼り付けます。

右上の板は丸めて、コネクターと抵抗の接続に使います。

円板は3枚で、コネクターより一番遠い板は中心に3mmの穴を明け、同軸コネクターの中心導体を直径3mmの銅パイプで延長し、この穴に接続します。 それ以外の円板は2枚ともセンター穴を16φとして銅パイプと距離を確保します。

抵抗は8本をパラに接続し、25Ωにした後、これを2段シリーズにつないで50Ωの抵抗にします。 また、オイルに浸すのはこの50Ωの抵抗のみで、スペアナモニーター用のATTやBNCコネクターはオイル外になるよう、Mコネクタと50Ωの抵抗の間に距離を確保するようにしました。

80wdummy1

80wdummy2

上の写真が組み立て完了したダミー抵抗です。5Wの抵抗を16本使っていますので、この状態で80Wの容量があります。 この裸の状態で予備テストしたところ、80Wの出力で、抵抗の塗装が焼け、煙がでます。 裸のままで約10分間80W連続テストをしたところ、初期の煙も収まりました。

これをペンキ用1リットル缶の蓋に取り付けます。

80wdummy3

80wdummy4

左上がダミー抵抗を缶の蓋の裏に取り付けたところです。 モニター用BNC端子へのATTは、2KΩ 2Wを2本シリーズに入れました。 右上は蓋をかぶせて完成した状態です。

アンテナアナライザで測定したSWR特性は以下のようになりました。 1.7MHzから50MHzまでは、SWRを小数点以下2桁まで表示する自作のアンテナアナライザで測定し、145MHzと435MHzはコメットのCAA-500mk2で測定したものです。

Rf_80w_swr_da

Rf_80w_swr_gr

缶の中に何も入れない状態(空気のみ)でのSWR特性は145MHzまでなんとか使える範囲です。 試に水を入れてSWRを測ってみました。50MHz付近にSWR最大ポイントがありますが、3.5MHzや7MHzなら我慢して使えると思われます。

オイルを缶の7部目くらいまで入れ、抵抗本体だけがオイルの中に浸るようにした状態で測定した結果、145MHzまでは空気だけのときより良好です。

使ったオイルは日清キャノーラ油、近くのスーパーで、お一人様1本限り、1kg 108円でした。

下はオイル充填状態で、140Wの出力を加えダミーロードのエージングをしているところです。 約10分経過して、缶の上面はアッチッチですが、缶の底辺は指で触っていられます。

Dummy140wtest

140Wで30分のエージングが終わりました。 さすがに缶の底辺も指を触れ続けられないほど熱くなっています。 1時間半、間をおいて、今度は1時間のエージングにトライしました。 50分過ぎくらいにモニター出力が出なくなりました。エージングを中止し、缶の中を覗くと、 2KΩの抵抗2本が缶の底に沈んでいました。 ハンダが解けて、オイルの中に落ちてしまったようです。

Dummyatt

80Wの金属皮膜抵抗16本には異常がありませんので、このATTの部分だけがNGのようです。缶が冷えるのを待って、左の写真のような対策を行いました。ATTの抵抗を6本に増やし、すべてカシメで結合しました。 先端の同軸芯線への接続はハンダ付けです。 これで再度1時間のエージングにトライし、問題なしでした。 BNCコネクタの反対側に見えている小さな円筒は換気孔です。 熱膨張した空気の逃げ場を作る為、設けました。 中のオイルが揺れて跳ねても、簡単にこぼれないように筒状のダクトにしてあります。ダクトの内径は3mmです。

 

この実験から、安心して200Wのエージングが出来る為には、缶の容量を2リットルくらいまでアップすべきと考え、ホームセンターに探しに行きましたが、あいにく2リットル缶は無く、代わりに3リットル缶がありましたので、これを購入して来ました。サイズ的に、1リットル缶がすっぽり収まり、取っ手の部分で宙吊りになりますので、とりあえずは3リットル缶に水をいれて、オイルの入った1リットル缶沈めて見る事にします。

このダミーロードを実際に使っている状態はこちらです。

Dummy3l

その後、1リットル缶では熱容量が不足するのを実感しましたので、3リットル缶に変更する事にしました。

特用1.3Kgのキャノーラ油を継ぎ足すと、ちょうど抵抗全体がオイルの中に浸すレベルとなりました。 元の1リットル缶は粗大ゴミ用のごみ箱行となりました。

 

INDEXに戻る

2017年6月17日 (土)

7MHz D級アンプ QRO計画 6 (140W)

<カテゴリ AM送信機(PWM方式)

100Wエージングで、ダミーロードがアッチッチになり、途絶えていた200W出力に向けたテストをやっと再開できるようになりました。 しかし、現在の電源は最大で140Wのキャリア出力しか出せませんので、まずは、140Wでのエージングとしました。

Amtx200w0

シャーシも200W対応に改造しました。

200W対応配線図 AMTX_100W_5.pdfをダウンロード

Dummy2501_2

Dummy2502

6年前に自作したダミーロードはDC-2GHzで250WというRF抵抗を使用していました。 作りが雑なので、145MHzでSWR1.5くらいの性能しか有りませんでしたが、HFで使う分には十分です。 今回これに通風孔を開け、スペアナでモニターできるように出力端子を追加しました。 そして、臨時にファンも付けられるようにし改造しました。

このダミーロードで200Wの連続運転が出来るかは、これからです。 このRF抵抗はすでに生産中止になっており、焼けたらおしまいです。

さっそく100Wでエージング開始です。 音楽を変調し、最大90%くらいの変調度にした途端、抵抗の焼ける匂いです。 送信機本体ではなく、ダミー抵抗のほうから煙が出ています。放熱穴からのぞくと、モニター端子へ設けた2.2KΩの抵抗が焼けて黒くなっています。 この抵抗は1/4Wタイプ。 改めてこの抵抗の電力を計算すると、100W時約2.2Wの電力になり、焼けて当然。 ジャンク箱をひっくり返して、2KΩ 2Wという抵抗を見つけ交換しました。

100Wでエージング中に煙を出したクラニシの電力計を開けてみましたら、まさしく焼けたのは、このモニター端子用ATT抵抗でした。しかも、誰かが追加した1/4Wの抵抗でしたので、これを同じように2KΩ 2Wに変更して、また使う事にします。

Amtx140wmaxmod

Amtx140wout

左上は140W出力時の最大変調度波形、右上はその時の電力計の指示です。

しばらくエージングを続けていると、突然出力が100Wくらいに落ちました。さらに続けると、変調のピークでジーという音と共にどこかが明るくなります。しばらく観察していると、最終段のバリコンVC1の羽根から青白い光が出て放電しているのが見えました。 電源をOFFして放電したところを観察すると、ステーターの羽根が変形し、ギャップが狭くなっている所でした。これを、正常の位置に修正し、全てのギャップが約0.5mmになるようにし、再度トライです。

しかし、今度は、正常なギャップで放電します。放電は変調のピークで発生し、一度発生すると、かなりの時間継続します。 この直列共振回路は思った以上に高電圧を発生させるようです。 対策は、コイルのインダクタを小さくし、バリコンの容量を増やしQを下げるか、もっと耐圧のあるバリコンに変えるか。 

Q3coil

高耐圧のバリコンに変える案は、実現性がありませんので、コイルのインダクタを下げ、Qを下げて発生する電圧の波高値を押さえる案でトライしました。

現在のQは計算で5.9くらい。これを3.4まで下げました。 バリコンは当初75PFくらいでしたが、これを130PFくらいまでアップすると、バリコン両端の電圧は約58%に下がった事になりました。 この状態で140W連続出力でエージングしていますが、異常なしです。

Amtx100wonly1lpf

約1時間くらいクラニシの電力計でエージングしていると、今度はクラニシの内部から塗装の焼ける匂いがしてきます。 200W 3分の仕様では140W1時間はやはりきついみたいです。 ダイアモンドの電力計は、50Wのときクラニシとほぼ指示値は合いますが、クラニシで140Wのときダイアモンドは180Wと指示します。 (ダイアモンドのSX-200は一度ダイオードをオリジナル品から別の物に交換しており、多分これがオリジナルと同じリニアリティを確保できない原因と思われ、私の持っているSX-200だけの問題です) 物置に有ったコメットのCMX-200を持ってきてつなぎかえると、クラニシと指示値は一致しましたので、今後はコメットのCMX-200と自作のダミーでエージングを続けます。

上は100W出力時のスプリアス特性です。 内臓の7次LPFだけの状態で、第2高調波が-50dBギリギリです。 実際に使う時は、外付けの6次LPFを通す予定です。

Amtx140wcur

現在の電源電圧は30V。さすがにTS-930S用の電源は350WくらいがMAXのようで、140Wキャリア出力時のピーク電力520Wは出ません。 オシロをモニターしていても約350Wが最大値となっています。 これから、200Wにパワーアップするには計算上36Vの電圧が必要ですが、合わせて800Wの容量が必要となります。 

とりあえず、この段階では、ここまでです。

TSSには余裕をみて40Vで200Wとして保障認定を申請しました。

ブロックダイアグラム 5.pdfをダウンロード

下は、140Wにて音楽ソースを変調しながら連続エージング風景です。昔からエージングテストは何十回もやってました。 開始してから30分で温度はほぼ飽和状態になり、その後1時間で温度カーブは横一直線となります。この間に、問題が起こらなければ、規定の4時間は達成できます。 現在は趣味の範疇ですので、目標2時間。 2時間OKなら良しとします。

Amtx140wasing_2

2時間のエージングが終了しました。ケース天板は触っていられないほど熱くなっています。 強制空冷の方法を再検討必要です。

幸い、2時間経過した時点でのRF出力は130Wで、140W一定が理想ですが、130Wまで下がったという事は、熱暴走は問題ないという結論です。

次の日、再度エージングテストをすべく、100Wの出力を自作のダミー抵抗へ加えたところ、スパークが起こり、煙を出して、抵抗が断線してしまいました。 いくら定格250Wとは言え、その条件は無限大放熱板の場合ですから、140W連続動作はきつかったのでしょう。 もうこの抵抗は有りませんので、ダミー抵抗も手配しなければならなくなりました。

200Wのエージングに向け、200W連続負荷に耐えるダミー抵抗、強制空冷そして800Wの電源をどうするかが課題となりました。

7MHz D級アンプ QRO計画 7 (200W) へ続く

 

INDEXに戻る

2017年6月 4日 (日)

7MHz D級アンプ QRO計画 5(100W)

<カテゴリ AM送信機(PWM方式)

放熱対策も部品のショート対策も完了した、100W AM送信機をテストしながら性能確認を行える状態になりました。

PLL VFOからドライバーへ14MHzの信号を入れ、ドライバー段のPP回路に12Vの電源をつなぎ、ファイナルの3パラPP回路に5Vの電源をつないでドライバー出力の共振コンデンサをバリコンに変えて、最大出力が出るように調整した状態で、3パラPPの電源電圧を可変してみました。

26w_85mod

左は、26W出力時の変調度最大付近です。これより、オーディオゲインを上げていくと、歪が生じ、100%変調の波形になりません。 前回の50W送信機でもその傾向がありましたが、この100W機はそれよりも悪化しています。 原因追及と対策は全体の確認が済んでからとします。

最初、この変調波形が出てこず、あせりましたが、変調回路保護の為に挿入したR6 1.5KΩが悪さをしていました。このR6が有る時は最大変調度50%くらいでした。 これを廃止したところ、写真のような85%くらいに変調度になりました。 この変調回路保護の抵抗はもう一本あります。R21 2.2KΩがそうです。 後日、この抵抗の値を吟味してみる事にします。

ドライバー段の出力にある直列共振コンデンサC32は、かなりクリチカルで固定コンデンサの置き換えだけでは、最良点に追い込む事が難しいようです。 よってここは耐圧100Vの80PFのトリーマーと56Pの固定コンデンサに変え、今後、色々検討していく中で調整出来るようにしました。

このドライバー信号を受け止めるトランスT2は当初3:1の巻き数比でしたが、ドライバー段の消費電流が1.7Aを超えるので、4:1に変更しました。しかし、電流は1.5Aまでしか下がっていません。 バラック状態で1.2Aでしたので、ここも検討必要事項となりました。

26w_pp

ファイナルの3パラPP回路のドレイン側とGND間に330Pのコンデンサを入れてありましたが、この容量では不足のようで、最終段のバリコンの調整もかなりクリチカルになっていました。 そこでこのコンデンサC4,C67を330Pから1000Pに変更しました。

左がそのときのドレイン電圧波形です。 気持ち、左側へ倒れていますので、まだ最適な状態ではないかも知れません。 今後100Wエージングテストなどを行いながら最適容量をつめていくつもりです。

ここまでの変更対応を行った上で確認出来た最大出力状態は以下のようになりました。

Amtxtest1

この出力は最大値ですので、実際に使用する場合、この状態より少し下げたVdd=14Vで100W出力になるようにファイナルのバリコンを調整するつもりです。

この12V 111Wで1分くらい出力すると、なにか焦げ臭いにおいがし始めました。 まだ壊すわけにはいきませんので、とりあえず、電源電圧を13.8Vにして、変調器をつなぎ、RFアンプには6.9Vしかかからないようにして各部のチェックを続ける事にしました。

100W送信機の回路図 AMTX_100W_2.pdfをダウンロード

今回も激しいハム音が受信機としているTS-850Sからでて、変調された音楽も良く聞こえません。 50W機のとき、DC電源を1本化して対策しましたが、同じようにやっても、全く小さくなりません。 試に隣に置いてあるTS-930Sで受信してみました。 すると、ハム音はぴたりと止まりました。 受信時のハム音はTS-850Sの変調ハムだったようです。 真空管式ラジオの場合、ヒーターの交流信号がDCラインに誘導して、変調ハムという形でスピーカーから聞こえますが、オール半導体のTS-850Sがどういうメカニズムで変調ハムを生じるのか、後日調査する事にします。 このTS-850Sのプリント基板は、新入社員が設計したような基板で、他のKEWOODモデルよりRFフィードバック受けやすくなってましたが、変調ハムが発生するような基板配置やパターン形状があるのかも知れません。

と、論評してる場合ではなさそうです。 電源電圧をいきなり30Vに上げたら、ブロッキング発振のような周波数シフトが発生し、周波数が安定しません。 ファイナルからの信号がPLL回路に誘導し、PLLがアンロックを繰り返しています。 どうも14MHzに周波数を変更した結果、PLLロック状態になるまで1秒くらいかかっています。 この間にファイナルからのRF漏れがPLLループ内に入り込み、周波数とは関係なく、PLLが不安定になっているようです。 これは、もう周波数の関係ではなく、機械的なシールドがどれだけ出来ているかの問題のようです。 残念ながら、メーカー製トランシーバーのようなシールド構造はいまさら実現できませんので、またもPLLは諦めざるを得なくなりました。

(7MHz用は諦めましたが、このPLL VFOは50MHz用として復活しました。)2018年8月

出力は絞り気味ですが、30Vの電源で普通に100W出ていますので、この目標は取りあえず完了しました。 残りはPLLの対策であり、対抗策としてはVXOしかなく、14MHzのVXOをどうやって作るかに方向チェンジです。

前作の50W機のVXOをベースに出力を2逓倍する回路を作ります。 方法はダブラーと言われているトランスとダイオードだけで実現する回路です。

ダブラー付VXO回路の配線図 AMTX_VXO14MHz.pdfをダウンロード

2017年12月追記

時期が冬場になり、室温が下がった事と、継時変化によりVXOの最高周波数が7195.0KHzギリギリになってきました。このままでは、いつか7195.0KHzをカバーできなくなりますので、クリスタルの数を1個削減し、スーパーVXOをやめ、通常の発振回路にした上で、C56を2.7Pから3.9Pに変更しました。 この状態での周波数可変範囲は7196.6KHzから7173.0KHzとなり、当初の周波数範囲から若干狭くなりましたが、高い周波数で余裕が出来ましたので、良しとします。

ダブラー回路のキモはトランスとダイオード及びその負荷抵抗になります。 回路図としては頭に入っていますが、どうやって定数を決めるのかは知りません。 そこで、自我流でやったところそこそこ実用になりましたので、紹介する事にします。

Dobuller1

Dobuller2

左上はダブラーのチップ装着面、右上は左が入力側の7MHz共振回路のトリマとトランス、右が同じく出力側の14MHz共振回路です。

Meganecorein

まず、トランスT1の設計ですが、これは、TDK製のFMラジオ用バランに使われているメガネコアをジャンク箱から探しだし、0.26mmのUEWを4ターン巻いたら約4uHのインダクタになりましたので、1次側を4ターン、2次側を8ターンとして、センタータップを出しました。 1次側のタンク回路として68Pの固定コンデンサと80Pのトリーマーで7.2MHzに共振させ、これを2次側で両波整流しますと、周波数2倍のかなり歪んだ14MHzの信号が得られます。 この負荷抵抗となるR4を10KΩの可変抵抗に変え、出力最大の抵抗を求めます。 この回路では700Ωくらいになりましたので、E12シリーズで最も近い680Ωに置き換えます。

このままでは、次段を直接ドライブできませんので、再度バッファーアンプで14MHz帯のみ取り出します。取り出すトランスT2は1次が3ターン、2次が1ターンです。

Dobuller3

左の波形は、ダブラーの初段Q1の入力部の波形が上で、下がT2の出力の波形です。

両方とも波高値はかわりませんが、出力の14MHzはきれいな正弦波となっています。

また、T2のトランスで送信機ドライバー段のGNDとVXOのGNDを直流的に分離し、GND電流による出力のVXOへの回り込みを軽減させます。

回路定数に82という値を多用しています。 本当は100Ωとか100KΩにしたかったのですが、手持ちの抵抗が残り少なくなりましたので、100とか100Kはどうしても必要な時だけ使う事にし、この回路のように、適当で良い場合はあまり使い道のない82Ωとか82kΩに変えてあります。(82を100に、82Kを100Kに変えても動作はほとんど変わりません。ただし、常に比が一定になるように変えることです。)

Img_3644

左が、PLL VFOを取り去り、半シールド状態でシャーシに取り付け、配線した14MHzのVXOです。 終段からの回り込みなどの検討の為、シールドごと移動する可能性もありますので、配線材は長めにして、束ねてあります。

一応、シールドBOXで完全に囲めるような配慮だけはして置きました。

このVXOの源発振周波数は7MHzですから、ダブラーの前段から周波数カウンターに加え、発振周波数を表示させています。 カウンターは前回の50W機と同じように、CALの時だけ、周波数をカウントし、送信や受信時はCAL時の表示をロックさせています。

周波数カウンター回路図 VXO_Counter.pdfをダウンロード

 

14MHz VXOを使用した100W送信機の回路図 AMTX_100W_3.pdfをダウンロード

Q1314drain0610

VXOが期待通り動き出しましたので、まず、ドライバー段の消費電流と最適ドレイン容量の検討です。 Q13,14の電流と最終段の出力を見ながら、ドレインコンデンサC34,35の最適値を探した結果、容量は262PF付近で最大出力が得られ、またこの時のドレイン電流は1.26Aでした。この時のドレイン電圧波形は左の状態です。 きれいな三角状の波形ではありませんが、この波形の時が一番効率がいいみたいです。 また、このドライバー段のドレイン電流は最終段の出力が最大になるようVC1を調整したとき、最少電流となります。

次は、変調段のLPFの再設計です。 30V電源で100W出ている時の終段E級アンプのインピーダンスは計算で1.8Ωくらいと出ましたので、このインピーダンスでLPFを再設計します。 

Lpf18

今回は手持ちのマイラーコンデンサが2.2uFですので、この容量を使えるようにカットオフ周波数や250KHzの減衰量をADJしました。 その結果、左の表のような定数が得られましたので、カーボニルコアによるインダクタを作り変える事にします。

最終的には30Vの電源電圧を上げて、200Wの出力を狙うつもりなので、コイルに使う銅線もサイズアップし1.25SQのKIV線にします。

しかし、例え低透磁率のカーボニルコアでも数10uH以下のインダクタの場合、目的とするインダクタにピタリと収める事は困難ですので、目標値を最初に超えた巻き数とします。 そして、コンデンサはほぼ計算通りの定数に合わせます。 こうやる事によりカットオフ周波数が低い方へずれますが、250KHzでの減衰量は大きくなります。 計算で出したカットオフ周波数は30KHzですから、これが例え半分の周波数になろうが全く問題有りません。

Newlpfcoil

左上は8.6uH、右上は19.3uHです。 これらの製作に当たり、以前製作したLCメーターが大活躍です。 コンデンサは初段が6.6uF、後段を2.2uFにしました。

この新LPFを実装した状態での無歪最大変調度は以下のようになりました。

New_lpf_mod

オーディオのエンベロープは綺麗になりましたが、最大変調度はほとんど変わりませんでした。また、R21 2.2Kを外してみましたが、最大変調度は変化なしでした。 次はD1,9ショットキーダイオードを増やしてみる事にします。

ショットキーダイオード(SS560V5)をさらに2本追加し、電源電圧も30Vに上げたところ、変調がうまくかかりません。変調段のD級アンプのソースとGND間の波形を見てみると、激しいリンギングが乗っており、+側で10V、マイナス側で-20Vのヒゲがあります。 原因を推察するに、C12のバイパス不足のようです。 その不足の原因がGND廻りの配線が細く、パスコンの役目が著しく落ちている事のようです。 

Amtx100wout

そこで、今までGND配線に使っていたAWG24のワイヤーを廃止し、幅3mm、厚さ0.3mmの銅板に変えてかつ、チップコンデンサ2個パラ付けし、追加したショットキーダイオードも同様に最短で電源ラインのGNDに接続させました。 結果、+側は6Vくらい、マイナス側は-10Vくらいまでリンギングのピークがおさまりましたので、恐る恐る、バリコンを回し出力を増加さると、出力100W時、左のような変調波形となりました。 なんとか前回の50W機と同レベルまで改善できました。

ところが、この写真撮影をしている間に、クラニシの終端電力計から煙が出始めました。 時間にして2分くらいの100W出力でしたが、許容電力を超えたみたいです。 クラニシの取説によると、200W 3分間とありましたので、100Wならかなりの時間OKと思ったのですが、実際は違ったようです。 とにかく、送信を止め、代わりに自作の250WダミーロードとダイアモンドのSX200を持ってきて、検討の続きを行う事にしました。

Amtx100woutpwr

左のアルミの箱が250WダミーBOXです。SX200は105Wくらいを指しています。この状態で、終段のバリコンをさらに容量ダウンの方向に調整していくと、最大出力180Wが得られました。(SX-200の指示は異常値でした。クラニシで確認したところ140Wが正しい値のようです。) しかし、この電源で9Aくらい流れますので、動作が不安定となります。従い、30V電源では120Wくらいを最大として、それ以上出力する時は電源電圧を上げることにします。 

さすがに強制空冷が無い自作のダミーBOXは煙こそ出しませんが、アッチッチ状態です。 とりあえず、100W状態で10分くらいのエージングを行いましたが、ダミーBOXのアルミ表面を触れないくらい熱くなりましたので、エージングを中止しました。

Amtx100wajing_2 上は100Wでエージング中のフロントパネル面です。電流計の振れが異常です。ほんとは5.5Aくらいは流れているのに。 原因は高周波のバイパス不足でした。電流検出抵抗を電源のフィルター前に移しましたら、正常になりました。

FET6石を使った終段E級アンプの放熱板は指で触っても、少し暖かを感じるだけ。変調器のD級アンプの放熱板はそれ以下の温度。この中で一番熱くなっているのは30Vから12Vを作るDC/DCの放熱器と、ドライバー段の放熱板くらいで、どちらも指をずっと当てていられる状態です。 熱設計は余裕が有り過ぎる感じですが、ダミー抵抗がもちませんでした。 これから、200Wでの長時間エージングをせねばなりませんが、その前にダミー抵抗をなんとかしなくては。

100W AMTXの配線図 AMTX_100W_4.pdfをダウンロード

 

7MHz D級アンプ QRO計画 6 (140W) へ続く

 

INDEXに戻る

2017年5月20日 (土)

7MHz D級アンプ QRO計画4(組み込み)

<カテゴリ AM送信機(PWM方式)

バラック状態での確認作業は、トラブルだらけで、手持ちのICやFETをどんどん壊してしまいます。 そこで、ジャンクの測定器の中身を取り除き、その中に、この100W AM送信機を収納する事にしました。

Tx100_shassis

とりあえず、バックパネルにアンテナ端子、送受信アンテナ切り替えリレー回路、7MHz用7次LPFのみを取り付け、パワーアンプやドライバー回路、PLL回路、ファンなどを並べて、概要を把握したら、図面を起こし、メインシャーシやフロントパネルの加工を行います。

変調回路は、前作の50W送信機の終段D級回路を2パラから4パラに変えて実装予定です。

組み立て図が出来たら、フロントのアルミ板や、パワーアンプ部のシールド材料の寸法が判りますので、それから材料手配にはいります。

100txjw_2

 組み立て図が出来ました。 これをインクジェットプリンターで印刷して、アルミ板に張り付け、卓上丸鋸やボール盤、ジグソーを駆使して1日掛かりで組み立てたシャーシが下の写真です。

100wamtxconfig

まだ、各ユニットの配線は出来ておりませんが、主要なユニットは全てマウント完了しました。 ファイナルステージの出力側共振回路のバリコンを調整する為、ホームセンターから6φのアクリル棒を買ってきていましたが、カップリングに挿入しようとしたところ、これが挿入できません。 アクリル棒の直径をノギスで測ると6.3φでした。 やむなく、このアクリル棒をカッターナイフで削り、現物合わせでカップリングに挿入する事に。 幸い、手元に6.3φ用のツマミがありましたので、なんとかかっこうはつきました。

Power_lpf100w

4paramod

左上は、このTX用に手配したコモンモードフィルターです。 右上はFKI10531を4個パラ付した変調用D級アンプです。 あわよくは200WのAM送信機でも使えるようにとの願望も込めて組み立てています。

配線図 AMTX_100W_0.pdfをダウンロード

FET 4パラによるD級変調回路の動作確認ができましたので、いっきに全ユニットの配線を行い、完成しました。

Amtx100wcmp

ケースの外形サイズが430mm x 400mm x 96mmという事もあり、かなり」ゆったりと配置出来ました。構造的にはRFブロックをシールドで囲む事が出来るようにしていますが、これから、100W、あわよくは、200WのAM送信機を目指して、検討するとき邪魔になりますので、まだ実装しておりません。

Amtx100wfront

上の写真はフロントパネルを正面から見たところです。 PLL VFOは正常に動作しています。 変調回路やRFファイナル回路の+Bラインをカットした状態で、スイッチ回路の動作テストを行っている状態です。

PLL VFOからRF ドライバー段へ同軸ケーブルで配線した関係でミスマッチが起き、74HC74をトリガーできませんでしたので、74HC74の前に1石のバッファアンプを置きました。 このトランジスターはAB級くらいで動作していますが、後段がFFによる分周回路なので、波形は気にせず、コレクタ抵抗やベースバイアス抵抗は適当に設定して有ります。 (470とか47kが定石なのですが、手持ちのE12シリーズ抵抗が在庫なくE24シリーズを使いました)

14MHzのPLL回路は一応、RFファイナルより一番遠い所に配置し、かつシールドケースの中に収納しましたが、終段からの回り込みが無い事を祈っています。

送信機全体の回路図 AMTX_100W_1.pdfをダウンロード

14MHz PLL回路図 PLL_OSC_14MHz.pdfをダウンロード

一応、レイアウトと結線はできましたので、出力を絞りながら、仕上げにかかろうと思います。

 

7MHz D級アンプ QRO計画 5 (100W) へ続く

 

INDEXに戻る

2017年5月 3日 (水)

7MHz D級アンプ QRO計画 3

<カテゴリ AM送信機(PWM方式)

13.8Vの電源で100Wの出力が得られるファイナルステージのアンプは完成しましたが、これをTS-930Sにてドライブした場合、7Wの出力が必要でした。 クリスタルOSCの出力でこのファイナルステージをドライブする為には、正弦波に近い7Wの出力が必要となりますので、ドライバーだけでQRP送信機より大きな出力の送信機が必要になります。

7Wの送信機が必要としても電源電圧は12V固定とすると、かなり小さなFETでも出力できる可能性が出てきます。 小電力のFETなら、TC4422やTC4452などの専用のFETドライバーを使わずに、CMOSゲートICだけでドライブ出来る回路が実現できそうです。

そこで、この小電力で入力容量の小さいFETを探すと、RSで見つかりました。

IRFI510GPBFというモールドタイプのFETで最大5Aですが、入力容量はノミナル値で180PFしかありません。 このFETを終段として、7WくらいのRFアンプをプッシュプル回路で作る事にしました。

ドライバー回路付の回路図 7M_amp_3para_driver.pdfをダウンロード

100wdriverfet

実験の途中に過大入力を加えた為、IC1の1番ピン(1A)を壊してしまいました。 そこで、遊んでいたIC2の3A-3B回路を使う事にしましたので、74HCU04の周辺が複雑になっています。 過大入力の保護回路を追加し、無信号時、FETのゲートが常に0Vになるようにクランプ回路を追加してあります。

100Wアンプの入力インピーダンスは3.5Ωくらいでしたので、ドライブ用FET Q5,Q6を入力容量の小さいIRFI150に変更したところ、5.5Ωくらいまで上昇しました。

T2の巻き数比は3:1ですから1次側から見たインピーダンスは約50Ωです。 ここにQが約3.5くらいの直列共振回路を経てT3につながります。 T3の巻き数比は1:2(実際は0.5:1)ですから、T3の1次側は12.5Ωとなり、ここに12Vを加えますと、最大9Wくらいまで出力をとりだせますので、直列共振回路の共振周波数をずらして出力を調整します。

この状態で7Wの出力が出るように検討した回路が添付の回路図です。

L2はカーボニルコアに0.6φのUEWを巻いて4uHのコイルにし、直列共振のコンデンサC7はとりあえず、最大350PFのバリコンを使用しています。

100wdrivertop2

100wdriverback2

左上がRFトランスにTS-930Sのパワーアンプで使われていた入力トランスを使用した、7W出力のD級PPアンプです。 右上はその基板の裏側で、大きな部品は74HCU04 2個と5Vの3端子レギュレーターくらいです。 不要インダクタの発生を抑える為に、蛇の目基板の配線は出来るだけ銅箔テープで行っています。

Gate_drive_7wamp

左は、ドライバー出力のLC共振回路のVCで、終段のFETのゲート電圧の波形が上下で大きく崩れないように調整した時のゲートドライブ波形です。

波高値は5Vppくらいです。 ここは7Vppくらいは欲しいところですので、 終段が動作状態になってから、直列共振回路を調整する事にします。

この状態の時のドライバー回路の消費電流は電源電圧12Vで0.46Aくらいでした。 約5.5WのDC入力ですから、仮に効率90%としても5Wくらいしか出力していませんが、なんとか終段FETのドライブが出来ています。

Q5,Q6のゲート電圧を7Vppくらいまで上げようとすると、ゲートのドライブ電圧のデュティが変わってしまい、均等なドライブが出来ない事が判りました。 原因は74HCU04の初段に加えられた正弦波の電圧値が変わると、このデュティが変わってしまうという問題です。 

アナログ的な対策をいくつか検討しましたが、バラツキの要素を取り除く事が出来ません。 

恒久対策としたのは、RF信号は14MHzで発生させ、これを途中で1/2にして、デュティを50:50に強制的に合わせこむ方法です。

新回路図 7M_amp_3para_driverPLL.pdfをダウンロード

100wdriverback3

左の基板で右上に追加された小さな基板が74LVX74です。 以前実験した2mまで使えるデジタルSWR計用の基板から切り出しました。 このICは150MHzくらいから分周に使用できます。ICは2個のFFを内臓していますので、配線は2個を直列に接続した1/4分周器となっていますが、今回の回路では、1/2分周部分から出力を取り出しています。

TS-930Sから14.4MHzの1W以下の信号を加えて、綺麗なFETドライブ波形が得られました。 実際に使う時は、以前試作してお蔵入りとなっている7MHzのPLL VFOを14MHz用に変更して使います。 前回は原発振周波数とパワーアンプの出力が同じ周波数でしたので、出力段からVCO回路へ回り込みが発生し、キャリア近辺のスプリアスが増えると言う問題で使えなかったのですが、今度は、出力周波数とVCOの原発振は異なります。 出力周波数の2倍の高調波がVCOと重なりますが、そのレベルは30dB以上低くなっていますので、多分大丈夫だろうと予想しています。

ジャンクボックスの中から、以前作成した7MHz用PLL VFO基板を引っ張り出し、ハードと、ソフトの変更を行いました。

PLLの原発振は14MHz台ですが、LCD表示は、その周波数を1/2分周した7MHz台となります。 14MHzも1KHzの周波数スパンで可変できますから、これを1/2分周すると、7MHzは0.5KHzスパンで変化する事になります。

Pll14pcb

Pll14out

左上は、PLLの原発振を14MHzに変更した基板と7194.5KHzを表示しているLCDです。右上はこの時のPLL VFOの出力波形で周波数は14389KHzです。 波形は上下非対称で歪んでいますが、この後段で1/2分周しますので、デュティには影響有りません。 レベルも7Vppもありますので、ATTが必要になるほど有り余っています。

14MHz PLL VFOの回路図 PLL_OSC_schema14.pdfをダウンロード

14MHz PLL VFOのソースコード PLL_VFO14to7.cをダウンロード

PLL基板、ドライバー基板、終段基板をつないでみました。以下はその時の波形で、左から、Q9,Q10のゲート電圧、Q9,Q10のドレイン電圧、Q5,Q6のゲート電圧です。

Q9q10gate

Q9q10drain

Q5q6gate

真ん中のQ9,Q10のドレイン波形は理想よりかなり離れておりますが、Q5,Q6のゲート波形はなんとか使える状態です。この状態でファイナル段に電源電圧5Vを加えると、最大で10Wしか得られませんでした。  また、この時のQ9,Q10のドレイン電圧は30%以上のレベル差がありました。 原因を調査したところ、Q9,10のIRFI510をフルスイングするのに必要なゲート電圧は8V以上必要で、5Vのゲート電圧ではノミナル1Aくらいしか流せない事でした。 FETのバラツキによっては1A以下しか流せないものもあります。 要するに5Vの電源で動作する74HCU04ではドライブ不足という事です。 5Vの3端子レギュレーターのGNDにゲタをはかして6Vにする実験もしましたが、少しだけ良くなる程度で、正、逆の電圧差は解消しませんでした。

バラック状態で、あっちがショートしたり、こっちが外れたりとトラブルが相次ぎ、またまたドライバー段のIC3 CLOCK入力が壊れてしまいました。 この修理の途中で5Vの3端子レギュレーターが壊れた事に気付かず、12Vの電圧がスルーして、74HCU04を2個、74LVX74を4個も壊してしまいました。 ICはまだ手持ちしていますが、これ以上の検討を諦め、正規のFETドライバーを探す事にします。

RSでFETドライバーを検索すると、極端に安いドライバーが見つかりました。 1個90円ですが、1.5Aのドライブ能力があり、スピードもTC4422並みです。TC4426という品番で8PIN DIPの中に2回路入っています。 ただし、このICは反転出力です。 非反転出力のICはTC4427という品番ですが197円もします。 反転出力のICは人気がないのかも知れません。 私が使う場合、反転も非反転も関係ないので、安いTC4426に決定しました。

Tc4426back

Tc4426front

左上がTC4426を使った基板裏側、右上が部品挿入面で、8pinのDIPがTC4426です。 このFETドライバーを使う事により、従来あった74HCU04の回路がなくなりましたので、回路的にはかなりすっきりしました。 TC4426は9Vの3端子レギュレーターから電源供給させます。また、14MHzを1/2分周するICは74HC74に変更し、このICが持っている反転出力を使い、直接TC4426を互いに逆相でドライブします。 TC4426の入力部には+5Vに電位を固定するクランプ回路を入れ、14MHzが供給されない時は、FETのゲート電圧が両方とも0電位になるようにしています。 下にその回路図を示します。

回路図 7M_amp_3para_TC4426driver.pdfをダウンロード

Q9gate

Q9drainQ7gate

上の波形は左から、Q9,Q10のゲート、真ん中はQ9,Q10のドレイン、右はQ5,Q6のドレインすなわち、終段のゲートドライブ波形です。 この終段のゲート波形は10Vppを超えていますので、ドライブ能力は十分と考えられます。 まだ終段には電源がつながれていません。 真ん中のQ9,Q10のドレイン波形はプッシュプルのアンバランスも解消し、画期的に改善しました。 そして、なんとなく判った事は、ドレインの電圧波形のピークがつぶれて凹む現象はドライブ不足が原因であると言う事でした。

現在は、FETの破壊を恐れて、恐る恐るチェックしていますので、全体像はまだ見えていませんが、なんとか使える状態になったと思われます。 

机の上にオープン状態に置き測定した出力は

5V時 16W

6.9V時 26.4W(13.8V時 105.6W)

13.8Vとそれ以上の電源電圧時の出力は、シャーシに組み込み、ファンが動くようになってから確認する事にします。

なお、この状態でQ9,Q10の電流は1.2Aくらいになりましたので、約14.4WのDC入力です。 効率80%とすると、約11.5Wくらいの出力になっている模様です。

7MHz D級アンプ QRO計画4(組み込み) へ続く。

INDEXに戻る

2017年4月29日 (土)

7MHz D級アンプ QRO計画 2

<カテゴリ AM送信機(PWM方式)

サンケンのFKI10531というN-MOS FETによる2パラプッシュプル回路は、6.9Vの電源で22Wの出力を得る事ができましたが、この時点でMax Vdsは40Vありました。 これは13.8Vの電源で80Vになる事からFETの最大Vds=100Vの規格に対してほとんど余裕が有りません。実験中にFETを壊すのは確実ですから、実験前に諦めてしまいました。

RSで適当なFETがないか探すと、以前チェックした事があるSTマイクロのSTF17NF25というFETが86円くらいでありました。これならVds max 250Vですので、かなり余裕が出来ます。 これを10個購入し、このFETで再度6.9V 25W出力に挑戦します。 ただし、このFETのRdsは165mΩくらいありますので、4個パラくらいにしないと、FKI10531と同等のRdsにはなりませんが、とりあえずは、3個パラプッシュプル(合計6石使い)でトライします。

回路図 POWER_amp_3para.pdfをダウンロード

比例計算では6.9Vの電源で21.4Wくらいになりますが、その他のロスの軽減策でチャラに出来るくらいのロスです。

3para_pp_jw_2

上の図面は、リンギング対策の為、FETのレイアウトを変更した、3パラプッシュプルのD級アンプ回路です。放熱板のサイズは前回と同じですが、向きを90度変えてあります。

この新アンプより、両面ガラエポの基板が使えるようになりましたので、基板は生基板をそのまま使います。加工するのは、ゲート入力回路のみで、ダイソ-で買った300円のミニドリルの刃先をグラインダーに付け替え、銅箔を削ってパターンを作り、チップ部品を装着できるようにします。 それ以外の配線はすべて短冊状の銅板で行います。

Pwr3parapp

上が図面通り、放熱板や基板を加工して配線完了したアンプユニットです。放熱板のサイズは前回と同じです。

Gatepwb_3parapp

 上は、6個のFETとそのゲート入力回路の基板です。各FETのゲートに1608の1Ω抵抗をシリーズに入れた手作り基板です。 リンギング対策の基本は構造が簡単であるという事ですが、この構造なら、4パラでも6パラでもすぐにできます。

Pwr3parappvds3_2

Pwr3parappvds3max_2

 左上は、電源電圧を3Vにして最大出力ポイントより30%くらいパワーを絞った時のVds波形です。 右上は同じ電源電圧にて、最大出力時のVds波形です。 ドレインGND間にバリコンをいれリンギング最小状態にしてあります。  まず、プッシュプルの両側で波形が異なります。また、この時の最大波高値は前回の半分くらいになっています。 どうも動作モードが変わってしまっているようです。 

原因を調べたところ、最大波高値が下がったのはFET3パラによる出力容量の増大が影響しているみたいです。 また、プッシュプルの両側で波形が非対称となっているのは、ドライブ入力部のFETを含むアースポイントが最適になっていないようです。 また、入力トランスの入力部分(TS930Sの出力端)の波形がきれいなサイン波からかなり崩れています。 これらは、今後ドライブ回路の設計のなかで、詳細を検討する事にします。

しかし、ダミーアンテナの両端波形はLPFなしですが、一応まともな波形をしています。

肝心な出力ですが以下のようになりました。

3parappout 一応当初の目標6.9Vで25W、13.8Vで100Wの出力を確保できました。 Rds=165mΩは最大値ですので、実力は結構低いのではないかと思われます。

この時のTS-930Sからの出力は7Wでした。 効率は3Vの電源の時70%くらいでしたから、100W出力時は70%以上あると思われます。 また、入力を7W以上にするとリンギングが多くなりますが、出力は変わりません。 逆にに7W以下にすると次第に出力は低下しますが、リンギングも改善され、最大出力の30%減くらいできれいな写真のような波形となります。

このアンプを2台シリーズに繋ぎ、電力合成すれば、13.8Vの電源で50WのAM送信機が出来ることが判りましたが、この13.8V 50WのAM送信機の使い道が有りません。今の所、AMで移動運用をするつもりは有りませんので、このパワーアンプはここで終わりにします。

Pwr3parapptest

上は、この新RFアンプの実験風景です。

これから、入力ドライバー回路の検討を行い、現行の50W AM送信機をQROする方向に目標を変更します。

7MHz D級アンプ QRO計画 3 に続く。

INDEXに戻る

2017年4月19日 (水)

7MHz D級アンプ QRO計画 1

<カテゴリ AM送信機(PWM方式)

キャリア出力50W(ピーク出力200W)のAM送信機は完成し、時々ON AIRしていますが、この送信機を製作始めたころの最初の目標「12V電源で50Wの送信機」はいまだに実現しておりません。 SSBトランシーバーでは13.8Vの電源で100Wの送信機は当たり前ですから、市販のトランシーバーは13.8Vの電源で25W出力のAM送信が普通に可能です。 そこで、当初の目標であった13.8Vの電源で50WのAM送信機(ピーク200W)に再挑戦する事にしました。

今回検討するパワーアンプの回路図です。POWERAMO_0.pdfをダウンロード

終段はサンケンのFKI10531パラレルプッシュプルでこの回路でまず25Wを狙います。 首尾よく目標達成できたら、同じものをもう1台作り、電力合成して50Wが実現できるだろうというもくろみです。

終段をドライブするには終段の入力容量は3000PFを超えますから、従来のTC4452などでは無理で、昔のトラ技に紹介されたFETをクロスして配置したオーソドックスな回路にもどしております。この回路では、ドライブパワーとして3Wくらいが必要になりますので、実際はこの前段に5WクラスのC級アンプをおきますが、実験の初期はTS-930Sから50Ωの出力インピーダンスで5Wくらいでドライブします。

まずは、入出力に使うメガネコアの吟味です。

Core_z

左のグラフは手持ちのフェライトコアに1ターンのコイルを通した時の周波数対インピーダンスを表示したものです。 デジタルでインピーダンスを表示できる手作りアンテナアナライザで実測しました。 この中で、TS930Sの入力トランスの実測カーブが濃い青色で示され、特性は10MHzをピークに14MHzでは下がっています。 一応この特性を目標に、コアを調査した結果、INPUTと表示してある、昔1個30円で買ったコモンモードチョーク用の分割コア(CMF)2個分が一番良い特性を示しました。 次に出力用としては、北川工業の分割コアGTFC4個分(OUTPUTの表示)でそこそこいけそうですので、これらを使い、メガネコアを手作りする事にしました。

Meganecores0_3

Meganecores1_2

左上の写真は、CMFコアを2個ビニールテープで縛り、その状態での寸法を基に、コアを貫通する銅パイプと側面でこれを受け止めるリングの図面をJW-CADで作図し、これを実寸大にプリントアウトした紙を厚さ0.3mmの銅板に貼り付け、ハサミで切り出した銅板です。 銅板をリング状に切り取る為に、まず「タケノコ」と呼ばれるドリルでリングの中心部分に穴を明けた後、外周をハサミで切り取って作ります。

右上の写真は出来た銅板をフェライトコアの中に埋め込みワンターンコイル付メガネコア状にしたものです。 この状態で裏、表ともハンダで結合すればメガネコアによる入力トランスが完成します。

Meganecorels1

同じようにして、出力側のメガネコアも作成します。

左側の大きなメガネコアはGTFC 28-16-13という分割コアを4個使い、ビニールテープで縛りまくった状態で銅板によるパイプとリングを作り出来上がったもので、外形は58x43x28mmでパイプの内径は12.5mmあります。

メガネコアのサイズが固まりましたら、これを基板上に配置し、FETを放熱板に固定する構造を考えながらパワーアンプ全体のレイアウトを決めます。 プリント基板は片面ガラエポをカッターで削りながら作る条件で、立体配置図をJW-CADで作成します。

この作業はプリント基板のように平面で回路を構成する電気屋の作業ではなく3D構造で回路を構成する為、機構屋の作業になってしまいます。

Jw_pweramp 上の図面はこの3D構造のパワーアンプ部分をJW-CADの2D図面で描いたもので、FETの配置を青色で、基板のパターン構造を赤色で示してあります。

この後、放熱板や、基板を図面通り加工すると、下の写真のようなパワーアンプが完成します。 ただし、ガラエポの基板はまだ未入手ですので、紙エポの銅箔なし基板に厚さ50ミクロンの銅箔テープを両面テープで張り付け基板の代用としています。

Pwrampassy1

このパワーアンプの入力トランスに2ターンの1次コイルを巻いてアンテナアナライザで入力側のSWRを測ったところ、SWR=6くらいでした。この状態でTS-930Sから出力を加え、電源電圧3Vの状態で出力が飽和するレベルは12Wくらいでした。 そこで、1次の巻き数を3ターンして、再度トライするとTS-930Sの出力が6Wくらいから、D級アンプの出力は飽和します。 次に4ターンの1次コイルを巻き動作テストを行いました。 TS-930Sの出力が3WくらいになるとD級アンプの出力は飽和します。このときの入力側のSWRは1.8くらいでした。 以後、この状態でのテストです。

Vd_3v

出力側のメガネコア(出力トランス)の2次巻き数は2ターンです。

Vds=5V 出力6.8W

となりました。これは従来の50Wアンプと同じ出力インピーダンスの場合に相当し

Vds=15V 時 出力は61Wに相当します。

上の波形は、Vds=3V時のドレイン電圧波形です。 従来の50Wアンプよりリンギングが多くなっており、最大出力にすると、ゼロレベルの部分にもう二山波形が現れるほど、乱れます。 最大出力付近でのリンギングを最少にする為、ドレインとGND間にバリコンを挿入し、リンギング最少になるようバリコンを調整しています。 ただし、今回の回路では、ドレインとGND間にコンデンサを入れてもドレインピーク電圧は下がりませんでした。

次に出力トランスの2次コイルを3ターンとし、バリコンでリンギング最少とした状態で

Vds=3V     4.2W

Vds=4V     7.1W

Vds =4.9V  10.4W (この時の電流は2.972A)

Vds=6.9V(13.8Vの1/2)のとき、22W

この状態で終段FETのドレイン電圧はmax40Vまで上がっていました。 またこの時のリンギング波高値は10Vくらい有りました。

という事は、13.8Vを電源としたAM送信機の場合、ピークパワー時80Vのドレイン電圧となりますので、Vdmax=100VのFKI10531では25Wの目標はかなりきついとい事が判ってきました。

過去の経験から、このギリギリのスペックでは、実験中にFETが壊れる確率が100%近くになりますので、FETの再選定は避けられなくなりました。 

Patest0

上の画像は、この出力テストの実験風景です。

リンギング対策の為、GNDの引き回しを再検討する必要が生じ、一度分解し、レイアウトをやり直した上で、FETの選択をやり直す予定です。

7MHz D級アンプ QRO計画 2 へ続く。

INDEXに戻る

2017年1月22日 (日)

LCメーターの製作

[PIC 自作]

アナログのCメーターはすでに自作してあり、重宝していましたが、インダクタンスを測る場合、アンテナアナライザにコイルとコンデンサを直列に接続し、共振周波数を読み取った後、計算で算出していました。 もう少し簡単にインダクタンスを測定できないかとWEB検索していると、沢山の記事が見つかりました。 既知のコンデンサ1個と、正確な周波数カウンターを利用して、マイクロコンピューターで自動測定するもので、かなり以前より、世界中で製作されているようです。

そこで、これらの製作記事を頼りに私も作ってみる事にしました。 マイコンはピン数は28本もあれば十分なのですが、今回はジャンク箱で遊んでいた40ピンのPIC16F1939です。

まずは、LCメーターに使用されるフランクリン発振回路の予備検討です。 校正時のLとCの組み合わせは100uHと1000PFが一般的で、WEB上でもこの定数の回路が多数存在します。 そこで、このLCと74HC04の回路で一番広帯域に発振する定数を確かめてみました。

下に回路図を示します。

Franklinosc この回路状態でC3にパラレルにコンデンサを追加して、安定に発振させられるC1,C2,R2を調べました。 C3に最大0.55uFのコンデンサをパラレル接続したとき、正常に発振するR2の値は580Ωでした。0.55uFが追加された場合、R2は580Ω以下でもOKでしたが、逆に1000PFだけの場合、580Ω以下では発振停止してしまいます。 そこで、選んだ抵抗値は820Ωとしました。 この段階では、まだ周波数カウンターは接続されていません。

500khz

50khz

左が100uHと1000PFの基準共振時の約500KHzの発振波形です。 右は0.068uFのコンデンサを接続した時の、約60KHzの波形です。 見ての通りオシロの同期がうまくかからず、2重に写っていますが、周期にムラが有っても、周波数カウントには影響ないと考えていました。 しかし、いざカウンターが動作するようになると、とんでもない周波数(1MHz以上)をカウントします。 波形の縦線の部分を拡大してみると、数MHzの寄生振動を伴っていました。 これでは、全く使い物にはなりません。 

WEB上で、インバーターはアンバッファ品が良いというのは、この性かも知れません。

そこで、インバーターをアンバッファ品に替えて実験してみました。 結果は0.1uFくらいまでは、安定に発振しますが、0.22uFくらいから発振周波数が1MHzオーバーとなります。 そして、この程度のレベルが限界に近いというのが、WEB上にも散見されます。 しかし、せっかく、作り始めた事もあり、なんとかこの最大容量を拡大できないか検討する事にしました。

Franklinosc1

従来からの変更点は正帰還回路にシリーズに入っていた抵抗R2を20KΩの半固定VR2に変えた事。 CMOS発振回路の出力に負荷容量としてC6を追加した事です。

VR2の値は4.7KΩくらいで微調整が必要でした。 C6は大きくすると、発振周波数の低下を招きますが、高容量のコンデンサを接続しても寄生振動が起こりにくくなります。 ただし、大きくなるほど、LとCによる共振周波数と実際の発振周波数と差が生じ、真のLCの値を表示しなくなります。

Cout_freq

上のグラフはC6を変化させた時の発振周波数の変化を表しています。 仮にC6が0PFの時の発振周波数が真のLC共振周波数とすると

100PFのとき発振周波数は0.116%ずれます。これは。コンデンサに換算すると0.232%の誤差となります。 1000PFの時は、発振周波数が1.78%とずれ、コンデンサの容量換算で3.58%の誤差です。 しかし、コンデンサの容量変化と周波数の変化は、ほぼ直線に変化していますので、帰還系の条件は発振周波数にあまり影響しないと思われます。  という事は、この負荷容量込みでキャリブレーションを行えば、そこそこの精度が得られると考えられる訳です。

C6を1000PFとして、キャリブレーションをしてみました。 

マイラーコンデンサの場合、6.6uFまでは正常に測れました。 電解コンデンサは1uFまでは測れましたが、その次に4.7uFを掴んだら発振周波数は0となっていました。  最少容量は、1PFでも測れます。ただし、正しいのかは?です。

また、コイルは、100uHの表示のあるものが94.77uH、3.3mH誤差kと表示のあるチップインダクタを測ると3.62mHと出ました。 なんとか誤差内です。

ここまでの検討で、そこそこの精度は出ていると思われますので、条件付で完成品に仕上げる事にします。 条件とは、コイルは確認できた最高インダクタンスを15mH、コンデンサは電解コンデンサは除外して、最高6.6uFとします。

使用した1000PFのコンデンサの温度係数は、通常のCH特性(0+/-60ppm)より特性の良いC0G特性(0+/-30ppm)のセラミックでMURATA製です。 

一方、中国製の100uHのコイルの温度係数は未知です。 使われている磁性体がフェライトのようですから、多分+1000ppmくらいと思われますので、これをカーボニルの+50ppmくらいに変更しないと安定しないと考えます。 そこで、カーボニルコアで100uHくらいのコイルを手作りする事にしました。 

100uhcoil

アミドンのカーボニルコアT37-2に0.3φのUEWを約150回巻いて100uHのインダクタを作り基板に実装しました。

左の基板はそのコイルを実装した状態です。基板に両面テープで張り付けてあります。

コイルが+50ppmの温度係数なら、コンデンサは-50ppmの温度係数でなければなりませんので、実働状態では、発振周波数がドリフトします。 特に暖房(多分冷房も)が動作中に、電源ONした直後はキャリブレーションした直後でもオープン状態の静電容量が0PFとなりません。 使用しながら、対策を考える事にします。

良く使われるPPコンデンサの温度特性は-25ppmくらいですから、0ppmのC0Gコンデンサより良い結果が得られそうです。 そこで、ネット通販を探し廻りましたが、サイズと価格が折り合わず、とりあえず現状としております。 仮に大きな温度係数を持つコイルやコンデンサの場合でもキャリブレーションした直後は原理的に正確に測定できます。 この安定度の追及はコンデンサを接続しない状態で、どのくらいの時間0PFを表示し続けるかで実用出来るかどうかが判断できます。

現状では2分間通電した後、キャリブレーションを行い0PFを表示し続けるのは約30秒です。 そして、30秒過ぎたあたりから0.03PFの表示になり、これが次のステップである0.07PFの表示になるまで90秒くらいあります。 という事は90秒以内なら0.03PFの誤差で容量を測れるという事ですから、実用上は全く問題有りません。

左側の3個の黄色の箱は回路切り替え用のリレーですが、手持ちの24V品を使った関係で、5Vから24Vに昇圧するDC/DCも実装してあります。 実際のリレーは2個しか使っていなく、3個目は予備です。

LCDの表示は、pFとμF、μHとmHの単位自動切り替えで、あまり細かい表示はしない事にしました。

下に、それぞれの表示例を示します。

C221

C223

L101_2

L332

ここまでの回路状態でケースに組み込む為、組み立て図の作図を開始したところ、用意したケースに収まりません。ケースはエレキーやCメーターに使用したタカチの同一サイズですが、高さが足りず、LCDやテスト端子を実装できません。

Lc_1939

最大の原因は、左の40PIN DIPのマイコン基板です。 もともと、以前、アンテナアナライザーの予備検討をした時の基板で、もう出番は終了していたものでしたが、今回のLCメーターの検討にちょうどよさそうでしたので、ジャンクボックスから拾い上げたものでした。

そこで、このPICマイコンを28PINのPIC16F1938に換える事にしました。 しかし、DIPのままで28PINに変えても、大きく改善は出来ませんので、同時にSOPに換え、アナログ回路基板に同居させることにします。 さらに、場所や高さ制限で厄介者でした24VのDC/DCも基板をサイズダウンさせます。

Lcm_1938このようにして作り直した基板が左の写真です。 ここまでサイズダウンすると、なんとかケースに収まりそうです。

PICマイコンを変更した回路図LC_Meter2.pdfをダウンロード

当初キャリブレーション時の周波数チェックはノーマル時を先にやり、キャリブレーション時の周波数チェックを後で行っていましたが、何回かテストすると、順序はこの逆、すなわち、キャリブレーションの周波数を先にチェックし、ノーマル時の周波数チェックを後からやる方が、キャリブレーション直後のオープン状態での容量が0PFになる確率が高くなる事が判りました。 従い、マイコンソフトもそのように修正しました。

ソースコードLC_Meter1938.cをダウンロード

Lcmeter_box

一応使えるようになりましたので、ケースに収納しました。 消費電流はリレーの電源が影響して、Cx測定時115mA、Lx測定時12mA、キャリブレーションピーク時230mAとなっています。 DC電源で使う分には問題は無いのですが、いざ使おうとすると、最初に電源の心配をせねばなりません。

以前作ったアナログのCメーターは電池式で、すでに2年以上経過していますが、いまだに電池交換した事が有りません。 今回のLCメーターも少なくとも1年は電池交換しなくても良いような電源回路を考える事にします。

校正用リレーを5V品に変えて、L/Cの切り替えをメカニカルスイッチに変更して、今まで5Vから24Vを作っていたDC/DCを3Vから5Vを作るDC/DCに変えた結果、Cx/Lx測定時16mA、校正時65mAまで抑える事ができました。校正時の65mAは1.2秒くらいの時間しか流れませんので、メカニカルの電源スイッチを追加する事により、かなり長期間電池交換なしで使えると思われます。

この状態の回路図LC_Meter3.pdfをダウンロード

また、PICのソフトも変更しました。LC_Meter1938_3.cをダウンロード

Battlcjpg

左は、リレーを5V品に変えた基板です。

今回採用したリレーは、以前5W QRP CW送信機のアンテナ回路切り替えに使ったあまり品で、内部に永久マグネットが入っているOMRON製の省電力でON出来るタイプです。 サイズも従来品の1/5くらいになりましたので、基板上の配置は見ての通りかなりすっきりしました。

今回、単3アルカリ電池2本により3VのDC電圧を5Vに昇圧しますが、R314を11KΩのままとした為、実際は4.75Vにしか昇圧されません。 しかし、回路はこの電圧で十分動作しますので、このままとしてあります。

Lcmeter0203b

また、このDC/DCコンバーターのICの最低電源電圧保障値は1.8Vですが、電源を昇圧した4.75Vから取れば、最低入力DC電圧として0.9Vまで動作します。 しかし、アルカリ電池でも1セル当たり0.9V以下になると電池の内部抵抗が急激に上昇し、電池2本の場合、1.8V以下になると、4.75Vは維持できません。 このDC/DCのIC資料では、ICの電源は昇圧した後から取れとなっていますが、両面基板の改造が面倒なので、入力側から取っています。

従来、LCDの下の行が余っていたので、何も役に立たない発振周波数を表示させていましたが、電池の電圧表示に変えて、少しは役に立つ表示としました。

その後、このLCメーターを重宝しておりましたが、AM送信機の検討中に、インダクタの値が実際値より小さく表示されるのではないかと言う懸念がありました。 そこで、アンテナチューナーに使用していたステアタイトボビンに巻かれたコイルを、このLCメーターとNFのLCメーターで比較してみました。 約8μHのコイルですが、NFとこの自作機の間で約10%の差がありました。 原因を推定すると、LCの共振回路を構成する回路の接続端子を含めた浮遊インダクタと浮遊容量がかなり大きい事が原因と思われます。

この問題を対策する為、一度消した周波数カウンタの値をLCDに表示するように変更して観察すると、明らかにおかしな数値が得られます。 C測定モードで、測定端子オープン時の周波数と、L測定モードで測定端子ショート時の周波数は同じでなければなりませんが、約0.38%差があります。 そして、C測定モードの時の周波数がL測定モード時より低くなります。 

Tp1

回路の実装状態を考察した結果、LCの切り替えスナップSWから測定端子を含めたワイヤーが持っている浮遊容量の影響であろうと考えられます。 左の回路の赤で囲んだ配線になります。 L=0測定時はこの配線はGNDに接続され、回路が持つ浮遊容量は無視されますが、C校正時はオープン状態ですから、浮遊容量が共振回路にパラに加わり、周波数が下がるようです。 LCメーターのKITで基板にリレーやコイル、スイッチ、接続用端子などを直付けしていますが、このような構造なら浮遊容量を小さく出来、多分この問題は大きくならないのではと思われます。 

Cns3まず、OSC回路からLC切り替えSWまでの回路を確認したところ、測定端子のGND側が別ルートでおおきく迂回していました。 そこで、このGNDラインを発振回路に最短で接続する為、今まで2Pであったコネクタを4Pに変えました。

この変更だけで、C測定モードに置ける端子オープン時の周波数が0.2%くらい変わりました。 しかし、まだC測定モード端子オープン時とL測定モード端子ショート時の周波数差は解消しません。

下の写真は左から、コネクタを4Pに変更した基板、真ん中はLC SWの周りのハーネス接続状態、右はハーネスをコネクターに挿入した状態です。 見ての通り、浮遊容量がかなり大きいと想像できます。

Lcmpwb1_2

Lcmswwire

Lcmwpcb

このLCメーターのケース加工状態では浮遊容量削減はほぼ不可能です。 そこで、C校正とL校正を独立させ、測定する前に必ず校正させるソフトに変更する事にしました。

Nocal

LC SWを切り替える度に、左のような表示をLCDで行い、校正を促します。 また、L校正モードで端子をショートし忘れた場合、あるいはC校正モードで端子をオープンにしていない場合、いつまで経ってもこのNo Caliblationの文字が消えないようにソフトを変更しました。 要は、L、Cいずれも測定前に必ず校正(CAL)を行わないと測定できないソフトに変更したものです。

変更後のソースファイルLC_Meter1938_4.cをダウンロード

また、サンプルのLとCをNFのLCメーターで測り、8uHのコイル(ステアタイトボビンに巻かれたコイル)のインダクタが最も近い値を示すようにCcalの値を修正しました。修正したCcalは990pFとなりました。 これは、使用した基準のコンデンサが990Pであったという事ではなく、周辺の浮遊容量や浮遊インダクタを統合した結果、基準コンデンサの値が990PFと等価で有ったという意味です。

Sampl

Cal_8uh

左上がサンプルL、Cで、白いボビンに巻かれたコイルが公称8uHのコイルでHFのアンテナチューナーに使われたいたものです。 右上の表の黄色の部分にその実測値を示しますが、自作LCメーターの値はCrefを990pFに設定した時のもので、NFのLCメーターに対して誤差0.13%です。その他のデータは、Crefを990pFに固定したまま、自作LCメーターで測定した値とNFのLCメーターが出した値を表示しています。 CもLも値が小さくなると誤差が大きくなりますが、私が使うには十分過ぎる精度が得られています。

Frefwave

左は、校正時の基準周波数発振波形で約495KHzです。

最終回路図LC_Meter4.pdfをダウンロード

INDEXに戻る

2016年11月22日 (火)

東広島市鏡山公園

カテゴリ <QSLカードの題材

ハムという趣味は、無線工学の学習から、無線機の製作(最近は購入)、アンテナの製作、交信スキルの実践、そして交信が成立したとき、お互いに発行する交信証の交換で完結します。 最近は、No QSLとか言って交信証の交換を拒否する局長さんも増えていますが、私の交信証発行の趣味を奪わないでと、相手からの交信証受領を期待せず、発行を続けております。

国内、海外を問わず、コンテストによる交信でも交信証明書(QSLカード)を発行しておりましたが、2018年より、コンテンストに限り、私からのQSLの発行を中止する事にしました。 ただし、QSLカードを送付していただいた方には送付する事にします。

その交信証(QSLカード)のベースになる画像の原本をシリーズで紹介します。

題材は「鏡山公園」

20071115_2

2007年11月15日 撮影

20110608

2011年6月8日 撮影

20130128

2013年1月13日 撮影

20120416

2012年4月16日 撮影

20091018 2009年10月18日 撮影

20140208_2  2014年2月8日 撮影

20140407 2014年4月7日 撮影

Qsl201403407 2014年4月7日 撮影

Kagami20140908 2014年9月8日 撮影

20141024 2014年10月24日 撮影

20141119 2014年11月19日 撮影

2015nov21 2015年11月21日 撮影

2016nov_s 2016年11月12日 撮影

170729_3 2017年7月29日 撮影

 

Kagami171105 2017年11月5日撮影

 

Aki2018qsl

2018年11月10日撮影

2018aki2 2018年11月10日撮影

 

20191130kagamiyama 2019年11月30日撮影

INDEXに戻る

2016年10月29日 (土)

LDG KT-100の改造(マイコン)

カテゴリ<ATU LDG KT-100

CM結合器を日本製に変えて、トライしたLDGのKT100改造版でしたが、内臓されたPICマイコンのソフトの問題で実用出来ず、お蔵入り状態でした。 そこで、このPICマイコンも改造版に変えてしまおうと検討を始めました。 基板やその上に搭載されている部品を大幅に変えることなく、PICマイコンを作り替える事にした改造記です。

Newcmd_2

Kt100modify0

左上のCM結合器は、日本製のSWR計に使用されていた基板から必要な部分を糸ノコで切り出して実装しました。 オリジナルCM結合器のコイル部分は残していますが、ダイオードや負荷抵抗は取り外してあります。

右上は検討用にMコネクタを仮配線し、デジタルオシロでタイミングを見る為いくつかのテストポイントを追加した全体の基板です。

オリジナルのマイコンはPIC16F866という8bitのマイコンですが、かなり古いマイコンですので、これとピンコンパチのPIC16F1938に変更しました。 どのマイコンを使おうが、ソフトの開発、デバッグを行う為には、内部の変数やレジスター状態が見える必要がありますが、オリジナル回路は、それらを見る為のi/oが有りません。 従い、PICkit3によるデバッグツールを使う必要があり、以下のハード変更を行いました。

・RE3はデバッグ用にMCLR専用端子とする。

・カウンター入力をTimer0の入力端子となるRA4に変更。

・今までRA4に割り当てられていたTT入力は廃止。

・RB7,RB6端子をデバッグのPCD,PCGと共用する為、74HC04によるバッファを追加し、リレー負荷がこの端子に直接接続されないようにする。

・TS-850からのリモート動作は無視し、マニュアル操作オンリーとし、チューニングスタートボタンと、チューニングリセットボタンのみを操作キーとする。 リセットキーを取り付ける場所が有りませんので、後側にプッシュSWを追加します。

・K3のリレーは本来RC2につながっている方が都合がよいので、RC2に接続し、今までRC2に接続されていたグリーンLEDはRA5に移す。

・オリジナルのfoscは8MHzのようですが、これを32MHzに変更し、オプチマイズなしのXC8コンパイラによる動作速度低下を少しでもカバーさせる。

これらの変更を行った配線図 KT100mod01.pdfをダウンロード

まず、リレーの制御ですがラッチタイプのリレーを何ミリセックの時間でドライブしたら動作するのか確かめてみました。すると、確実にセット、リセットが出来る時間は1.9msecという事が判りました。 実際の設定は余裕を見て、3msecくらいの駆動でセット、リセットを行わせる事にしました。 

また、周波数カウンターは、オリジナル回路では1/32768分周という恐ろしく大きな分周比を使っていましたが、この改造版はU2(74HC393)で1/2分周した後でT0CKIに加え、内部で1/8分周した後、Timer0でカウント動作をさせます。 Timer0は8bitカウンターですので、これにソフトによる8bitカウンターをシリーズにつなぎ16bitカウンターとしました。 そして、Timer1を使い、16msecのゲート時間を作り、Timer0のゲートを制御します。 Timer1のゲート時間は厳密に16msecとはなっていませんが、ここで多少のカウント誤差が有っても、メモリーされたデータを書き込み、読み出す事に関しては全く問題はありませんので、そのままにしてあります。 メモリーすべきデータは16bitですので、すべてのEEPROMエリアを使用したとして、127の周波数分を記憶できます。 1.8MHz帯は10KHz幅、28MHz帯は100KHz~200KHz幅、50MHz帯は300KHz~500KHz幅、その他のバンドは、この幅をベースに分割した73のバンドとして、EEPROMの2番地から16bitごとに記憶エリアを確保する事にします。

使用したCM結合器は1.8MHzから50MHzまで使用可能な、ファラデーシールドされた同軸線とセンタータップGNDタイプのコイルによる結合器で、検波は1N60で行っています。

Cm_swr

左の表は、7MHzで50,100,25Ωのダミー抵抗を使い測定したSWR値です。 このATUに実装する前は100Ω負荷でもSWR2付近を示していましたが、実装したらずれてしまいました。実装状態の周囲の影響が等価でない為、誤差が出るようです。 しかし、目標とするSWR値以下に追い込めたかを測るCM結合器ですから、20%くらいの誤差は許容できますので、これで良しとします。 

リレー駆動のアルゴリズムは、単純にクリアー状態(インダクタ、キャパシタとも0)から最大状態まで順次送り、目標のSWRになったら止めるという方法を基本とします。

Rlytiming

リレー駆動はリレーコイルに正方向に電圧を加えたとき、セットし、逆方向に電圧を加えたときリセットされます。 このセット、リセットの動作以外の時はリレーコイルに電圧が加わらないようにします。 オリジナル回路では、リレーコモン端子が常時5Vにつながっており、駆動コイル端子はマイコンのトーテムポールタイプのi/oに接続され、初期値はH(5V)です。 この状態でリレーコイル端子を3ミリ秒間だけLにするとリレーはセットされます。 また、リレーコイル端子をHにしたまま、リレーコモン端子を3ミリ秒間だけLにするとリレーはリセットされます。

実際のリレー駆動は、最初全リレーをリセットした後、必要なリレーのみセットするという2段構えの駆動になり、約7ミリ秒かかります。

Adtimingjpg

左は、リレーを切り替えた後、VREFが反応するまでの時間を測定したものです。AD読み取りが完了したら50us以内にリレーの切り替えを開始します。 AD読み取り2msec後くらいからVREFが変化し始め、約6msec後までには、安定します。よって、7msec後にAD値を取得する事にし、アルゴリズム完成後微調整する事にします。

当初、オリジナルの回路の通り、R4とR16の10Kは無しで進行したのですが、VREF端子にリレー切り替え時のスパイクノイズが乗り、ADが安定してデータを取得できませんでした。対策として、この抵抗を追加してあります。

とりあえずは、リレーを切り替えてAD取得完了までの1サイクルは15ミリ秒くらいになりました。

従い、コイル、コンデンサの組み合わせを全てチェックすると65,536の組み合わせがあり、約15分かかってしまいますので、小細工が必要です。

この小細工を含めたアルゴリズムは以下のようにしました。

step1:最初にSWRが5以上か以内かをチェックし、5以上ならリレーを8倍の速度で連続可変させ、SWR5以下の条件を探します。 ここでSWR5以下を探せなかった場合、そのアンテナは整合不可とします。 具体的には、リレー番号を8のステップで増加させますが、この時の組み合わせは960しかなく、時間にすると約15秒です。

step2:SWR5以下の場合、現在のリレー駆動データを初期値として、SWR1.15以下を探します。もし、この探す途中でSWRが5以上になってしまったら、再度step1に戻した上で、SWR5以下を探します。 

とりあえず、今回はSWR1.5以上の場合、整合出来なかったと定義しますが、実際に使用してみて、SWR1.5以上が頻発するなら、リミット値をSWR2くらいまでは拡大するつもりです。 ダミーアンテナでテストする限り、SWR1.15以下には収束しています。

step2のアルゴリズムは以下の通りです。

・コンデンサは入力側(アンテナのインピーダンスが50Ωより小さい)を初期値とします。

・コイルのインダクタンスを1step増加させたとき、SWRが下がれば、さらに1step増加させ、SWRが増加するまで繰り返します。 

・SWRが増加したら、可変する素子をコンデンサに切り替え、コンデンサを1step増加させ、SWRが下がれば、SWRが増加に転ずるまで増加を繰り返します。

・コイルもコンデンサも2回以上、SWR増加が発生したら、1stepずつ減少させます。この減少動作もSWRが下がる限り続けますが、途中で、インダクタンスや、キャパシタンスがゼロになったら、コンデンサの接続位置を入力側から出力側に切り替え、かつコイルもコンデンサも1stepづつの増加に変更します。

・これらを繰り返し、SWRがリミット以下になる組み合わせを探しますが、SWR5を超える状態が2回発生したら、整合不能と判断して、チューニング動作を中止します。

18MHz用スカイドアアンテナと20m長のはしごフィーダー経由でテストした結果、14MHzから28MHzまでは、SWR1.5以下に整合します。 1.8MHzから10MHz及び50MHzはまだ実際のアンテナでテスト出来ていませんが、25,50,100ΩのダミーロードではOKですので、この状態のソースコードを公開します。

 LDG_KT100_modif.cをダウンロード

テストを重ねて、改善が必要になれば、不定期で更新します。(バグ未修正)

下はハードの改造とマイコンを差し替えたKT-100です。

Ldgkt100mod2

SWRが無限大でも、出力制限をしない昔のトランシーバーでは問題ありませんが、FT-991を5W出力にしてテストすると、SWRが5を超える場合、出力が極端に絞られ、ATU内臓の周波数カウンターが動作しません。 カウンターが動作しなくても、チューニング動作は行います。この時、Freqは0となっていますので、周波数が読める状態までSWRが改善したら、再度周波数を確認する事にしました。

 

改造はしたものの、一度も実用する事がなかったこのATUですが、やっと日の目を見る時がきました。 話は2023年に飛びます。 この記事の中で、マイコンバグを含めて改造、改善しております。

 

INDEXに戻る

2016年7月16日 (土)

DSPラジオ(7MHz AM用)

<カテゴリ AM受信機 >

オールソリッドステートのPWM方式AM送信機が出来ましたので、これとペアで使うAM専用受信機が欲しくなってきます。 昔は高1中2のスーパーを筆頭に1V1とか0V1とか超再生の受信機も人気がありましたが、今作るのなら、はやりのDSPでしょう。 ということから、DSPラジオ用チップを入手して、なんとか、7195KHzのAMの交信が聴ける受信機が出来ましたので、紹介する事にします。

Dsp_rx0

Dsp_rx_lcd

上が、DSPラジオの全体構成です。 タクトSWとLCD部分は既成の基板を糸ノコで切り取って使っていますが、メインのDSPチップとPICマイコンは左側の蛇の目基板の中です。

左は、7195KHzを受信した時の表示で、VOLレベルが22(最大31)、Sが71dBuV(S9+31dB)、 IFバンド幅12KHz(4,8,12KHzを選択可)です。

LCDは160x128のカラーTFTです。後日、Sメーターをグラフ表示する事にします。

Dsp_rx_pcb

DSP IC はKT0915という中国製です。このICはFM,MW,LW,SWをカバーします。 SSOP16というパッケージですので、変換基板が必要です。 手持ちの20Pin用をつかいましたが、ICを販売しているaitendoで専用変換基板も扱っていますので、これを手配すべきだったと後悔しています。

周波数スパンは、AMについては1KHzまで対応していますので、7MHzのAM受信用ならなんとか使えます。 このICの出力は16Ωのヘッドホーン用のアナログ出力ですので、これをPWMパワーアンプで2Wまで増幅し、4Ωのスピーカーをドライブします。 PWMパワーアンプは秋月で入手したPAM8012という基板付のチップです。 ICの出力端に直接スピーカーをつなぐ事もできますが、SW受信時にノイズになる可能性が大きいので、チップコイルとチップコンデンサでLPFを作りスピーカーにつないでいます。 実際の使用状態でスピーカーのリード線を動かしてもノイズは変化なしです。 このDSPチップをコントロールするのはPIC24FV32KA302という16bitのマイコンです。 ソースコードはKT_AMFMdrv.cというファイル名でNET上にアップされていますので、それを参考にしながら、作成しました。 特にAMモード時の音声歪は、このソースコードがないと対策出来ないようです。なぜなら、データシートに出てこないアドレスのレジスタを書き換えていますので。

また、AMの周波数を設定するレジスタ(アドレス0x17)の15bit目を1にしないと、設定した周波数の受信はしてくれません。(データシートには0としか書いていない)

IFバンド幅を選択できるようになっていますが、その帯域は2KHz,4KHz,6KHzとなっています。しかし、この数値はオーディオの帯域幅で、通信型受信機で言うIFバンド幅は上下側波帯を含む帯域ですから、表示的にはこの2倍の数値としています。

信号強度はdBmで表示できるように計算式が提示されていますので、これを一般的なdBuVに換えてあります。 内部雑音の影響もあり、17dBuV以下は表示しません。 完成度が上ってきたら、この数値表示は止め、バーグラフのSメーターに変更しましたので、この状態のソースコードは有りません。

当初、7MHzオンリーの受信機にするつもりでしたが、DSPの制御の仕方を勉強していると、最初にFMが動作可能となってしまいましたので、FM,MW,7MHzの3バンド仕様としてあります。ただし、MWはバーアンテナが有りませんので、外部アンテナとしてロングワイヤーをつながないと聞こえません。

回路図 DSP_AM_RX1.pdfをダウンロード

I2Cの制御プログラムはPIC24Fの汎用として、NET上に公開されているものを利用しました。 この関数を使って実際にDSPチップに書き込んだり、読み出すプログラムはKT0915のデータシート通りとしました。 LCDの駆動は当ブログのLCDアナログメーターのプログラムを移植しました(元プログラムは未公開)。 使用しているフォントはアンテナアナライザーの自作のソフト(未公開)からの流用です。

実際に使用した結果、発見された問題点は以下です。

・S9+70dBくらいのアンテナ入力を入れても音声の歪は有りません。 いくら強入力に強いと言っても、送信中の過大入力からDSP ICを保護する為、ダイオードによるリミッターを実装してあります。

・送信機が過変調となると、パチパチと言ったおおきなデジタルノイズが聞こえます。

・感度がイマイチですが、プリアンプを入れてもS/Nが悪化するだけなので、現状とします。

・AMの受信中に大きなノイズが入った場合、AGCのリカバリタイムが恐ろしく長い。 色々調べましたが、対策案無しです。もし、この現象が起こったら、電源SWをOFF/ONしてDSPをリセットすると直ります。

・無信号状態からいきなりS9+40dB以上のキャリアが入力されると、「ガー」と言った異常音が0.5秒くらい発生します。 多分AGCが段階的に効いていく途中のデジタルノイズなのでしょうが、通常のラジオとして使う場合、全く問題にはならないですが、通信の時は、相手が相当強力な信号なら、送信開始する度に発生しますので、いやなノイズです。

実際に7195KHzをワッチした感じは、変調のピークでパチパチ音が入る事以外、了解度は比較的良好です。 TS-850の6KHzフィルターの了解度を100とすると、このDSP受信音は8KHzフィルターのとき、    90くらい、12KHzのとき、95くらいです。 感度が悪いのが、かえってS/Nを良くして、S9以上の信号なら、DSPの方が了解度が良い事もあります。 ちなみにTS-930のAMモードは70くらいですから、TS-930よりはかなり聞きやすいです。

変調のピークでパチパチと言うのは、AGCの状態が変化するようなキャリアレベルの変動が有った時に、ゲイン切り替えを行いますが、この時に発生するノイズではないかと推測されます。 従い、一定のキャリアレベルが継続しないSSBを聞くと、当然モガモガで復調はできませんが、パチパチノイズが発生しっぱなしになります。 しばらく7195KHzをワッチしていると、パチパチノイズが異常に発生しているAM局が結構います。 このパチパチノイズがある局をTS-850で聞くとかなり歪んだ音です。 オーバー変調の局がすぐに判る恐ろしい受信機になってしまいました。 ちなみに、きれいな変調をかけている局は大きな声を出しても、不思議とパチパチノイズは発生しません。

また、深いQSBがあると、例え放送局の信号でもパチパチ音が出るようです。

Smeter

Sメーターをバーグラフタイプに変えてみました。 TS-850のSメーターを見ながら実験的に合わせこんだもので、計算された信号強度とは合致しませんが、良しとしました。 バーグラフの分解能は2ドット単位となっています。

ただ、問題もあります。周波数を変更した場合、そのショックノイズでバーが最大レベルまで振れてしまい、非常に目ざわりです。 音声は、MUTE対策をしてあり、音としては聞こえませんが、この信号強度を表すデータは野放しのようです。 そこで、周波数を変更した直後はSメーターを更新しないようにし、信号強度の数値が安定したころにSメーターを駆動開始するよう、ソフト的に対策しました。

ハードによるスタンバイSW機能を付けていますが、ここをGNDに落として受信機をMUT状態にすると、Sメーターがフルスケールになります。 この辺も、まさかSメーターを付けるとは考えていないDSP設計でしょうから、Stand-byになったら信号強度を示すデータをゼロにセットしてメーターが振れないようにしました。

このStand-byから復帰したとき、DSPの内部処理がデフォルトに戻る部分があるようで、Sメーターの指示が変わったり、ノイズが増えたりします。そこで、復帰した直後にDSPを再度イニシャライズし、バンドや周波数をStand-by前の状態に復帰させています。

セットを金属ケースに収納し、ノイズ対策の為、デジタル回路とアナログ回路を分離したところ、反対にノイズが増えました。 今まではデジタルノイズでAGCがかかり、それなりにゲインを抑制していたので、目立たなかったのですが、ノイズ対策をしたら、かえってDSPとPICが通信する時のノイズが気になるようになりました。 そこで、一番ノイズが大きかったSメーターのデータ転送を、FMモードのときのみ禁止しました。 ただ、FMモード時Sメーターが振れないのも寂しいですから、FMモードに切り替えた時、もしくはFM周波数の変更が有った場合のみ、数秒間だけSメーターデータを読み出して表示させ、これを保持させています。 MWやSWの時は、もともとノイズが多くてあまり気になりませんのでMAINルーチンが1周するごとにSメーターデータを更新しています。

次に、音量の調整も変化が有った時のみDSPへデータを送信することにしました。

最新のソースコードです。 AM_RX2.cをダウンロード (2017/1/9 修正)

フォントデータ2種類です。Font7.hをダウンロード  fontF.hをダウンロード

Am_rx_front

Am_rx_back_2

Am_rx_top

上の画像は左から、フロントパネル、バックパネル、トップパネルです。

リアのMコネクタは7MHz、MW用、赤の端子はFM用です。

実際に固定運用でQSOに使ってみましたが、パチパチノイズには閉口しました。 このノイズで了解度が落ちます。 そこを必死で聞き分けようとしますので、非常に疲れます。

移動用の簡易受信機くらいにしかならないですね。  現在はローカルのFM放送受信用としています。

2017年2月

最近、7195KHzを受信していると、綺麗に変調をかけている局との交信は例え深いQSBがあっても了解度が下がるわけでもなく、実践で使えます。 将来、トランシーバー化する検討をする事にします。

2018年1月

Sメーターの信号レベル定義を見直し、景気よく振れるようにソフトを変更しました。

AM_RX3.cをダウンロード 

2018年8月

この7MHz用受信機にクリコンを内臓させ50MHz受信を追加しました。 この50MHzを追加したソフトで、パチパチノイズを完全では有りませんが、かなり改善出来ています。

INDEXに戻る

2016年7月 7日 (木)

周波数カウンターの製作

[自作 PIC TCXO AN592]

ATUやアンテナアナライザーを製作する中で、周波数カウンターも作ってきましたが、色々実験している内に、汎用の周波数カウンターを必要とする場面が結構発生します。 その為に、アンテナアナライザーの中に外部の信号の周波数をカウントする機能を用意したのですが、このカウンターの入力インピーダンスが50Ωの為、信号源を過負荷状態にしてしまい、場合によっては発振周波数が変わってしまうという不都合がありました。

そこで、入力インピーダンスが比較的高く、40Hzくらいから500MHzくらいまでを簡単に測れる周波数カウンターを新たに作る事にしました。

周波数カウンター回路図 Fcounter0.pdfをダウンロード

使うマイコンはジャンクBOXの中に余っているPIC24FV32KA302という16bitのマイコンです。単純なカウンターですので、8bitでも十分実用になる物をつくれますが、アンテナアナライザーの製作で、開発資産がいっぱいありますので、今回のカウンターは16bitで進行します。

目標の仕様は、40Hzくらいの低周波から500MHzまでのUHFまでをそこそこの精度でカウント出来、入力インピーダンスは10KΩ以上で感度も100mVくらいとしました。

ハード的には、プリスケーラ無しの場合、1Hz単位で10MHzまで、10Hz単位で50MHzくらいまで測れる回路と、1/64のプリスケーラーを付けて1MHz以上1GHzまで100Hz単位で測れる回路をスイッチで切り替えて実現させます。 それぞれの回路にデュアルゲートのMOS-FET BF1211によるLNA(ローノイズアンプ)を設けて所定の感度と周波数帯域を確保します。

Fcfront

Fcback

-

2個のBNC端子の内、左側がAF,HFを1Hz単位ではかれる入力端子、右側が一応1GHzまで100Hz単位で測れる入力端子です。どちらの端子が有効かは真ん中のスナップスイッチで切り替えます。 UHFで動作するプリスケーラーは低い周波数が苦手で、簡単に手に入るプリスケーラーは、2GHzまで測れても最低周波数は100MHzくらいというICが多いのですが、今回使った富士通のプリスケーラーMB501Lは、最高1GHzながら、最低1MHzという、ハムにとっては非常に利用しやすい帯域となっています。 ただし、すでに廃番品種ですので、入手はプレミアム価格を覚悟必要です。

カウンターのゲート時間の管理は、それぞれのカウンター動作モードごとに、独立したカウンター関数を用意し、個別にゲート時間を微調整する事にしています。 校正はFT991から10120.00KHzの信号を送信し、すべてのモードでこの表示になるようにソフトを調整してあります。

Fc40hz

Fc500mhz

左上は、自作の正弦波発振器で40Hzを出力したときのカウント値です。31Hzとカウントしています。 この原因を調べたところ、本来1秒のゲート時間が必要なのに、100msecのゲート時間でカウントした後、10回分の合計を表示した事により、本来のカウント値は小数点付でなければなりませんが、カウント値に小数点以下は含まれませんので、小数点以下を切り捨てて合計した為と判りました。 よって、1Hz単位表示の場合、1秒のゲート時間に変更しました。 この変更の結果、40Hzと表示するようになりました。

右上は手元のCAA-500を最高周波数にした時の表示です。CAA-500の表示との差は1KHz以下ですが、どちらが正しいか判りません。 しかし、私が使う範囲内ならこれくらいの精度で十分です。 また、使用しているプリスケーラーの仕様の関係から、VUHF端子に入力が無い場合、ランダムノイズを計数しますので、表示がでたらめになります。 

ソースコード F-counter.cをダウンロード

C言語で書かれた周波数カウンターは特定の周波数で誤差が出ます。特に、カウンターのbit数が不足する為、ソフトで作成されたカウンターを連結して、カウントと条件判定をCで記述した場合、このソースでもその処理に1.2usから2.4usくらいの時間がかかりますので、この間に、ゲート時間がきたりしたら、その分だけ誤差になります。 精度を上げたい時は、アセンブラで記述しますが、それでも誤差が半分か1/4くらいになるだけで、決定的な対策にはなりません。 誤差が許容できない時は、外部回路によるゲート制御しかないようです。 実験的に、タイマーのオーバーフローを割込みで処理してみましたが、かえって誤差が多くなりました。 また、温度補償を行っていない水晶発振回路の周波数はかなりいい加減です。

2018年10月

DDSによる信号発生器(SG)を作ったので、50MHzを発振させ、このカウンターで測定してみたところ、2.5KHzも多くカウントします。 この誤差をPPMで表示させると、50ppmとなります。 通常の水晶発振器の誤差はこのくらいはありますので、水晶発振子と外付けの負荷容量だけで作成した発振回路の誤差としては当たり前の誤差となります。 今、50MHzのAM送信機を自作中ですが、この周波数を測定して2.5KHzの誤差では、全く周波数カウンターの意味がありません。 そこで、もう少し精度を上げたカウンターに作り代える事にしました。

今までは、最低でも50MHzまでは外部プリスケーラーなしでカウントする為、非同期カウントが可能なTimer1で周波数カウントをしていますが、このカウンターは16bitです。 最大999MHzまで100Hz単位で表示するには最低24bitのカウンターが必要であり、16bitのTimer1がオーバーフローする度に、ソフト的に作成した16bitのカウンターをインクリメントしていました。 このソフトでインクリメントする最中にゲートOFFの時間になると、即カウント誤差が生じ、これが50ppmくらいの誤差となっていました。

一方、この16bit PICの中には、ハード的に連結出来る32bitのカウンターが2系統ありますが、いずれも同期カウンターの為、その最大カウント周波数が10数MHzという条件があり、とても50MHzはカバーしません。 しかし、カウンター入力部に接続されたプリスケーラーの分周比を大きくすると、例え同期式カウンターであっても、カウント可能な周波数は50MHz以上にする事ができます。

An592

そこで、マイクロチップがかなり以前に公開したAN592という技術資料で紹介されたプリスケーラー内のデータを読み出す技法を使う事にしました。 左の回路図がAN592によるプリスケーラー残数を読み出す為のハード接続図です。

AN592の解説はWEB上に沢山ありますので、それを参照して下さい。 この技法は、まだPICの規模が小さく、8bitのカウンターしかなかったころ、内部にある8bitのプリスケーラーを使い、トータル16bitのカウンターにした後、カウント終了後にプリスケーラーの入力にパルスを加え、プリスケーラーがオーバーフローし、タイマーが1カウントアップするまでのパルスの数を数える事により、プリスケーラーのカウント値を知る事ができ、このプリスケーラーの値とカウンターの値を連結した16bitのカウンターから、単位ゲート時間内にカウントした周波数を知る事が出来るものでした。 

左上の回路図はカウントしたい信号を470Ωのシリーズ抵抗経由で、カウンター入力に加え、かつこの入力をRA2という端子を出力にして、外部からの信号をブロックした後、RA2にパルスを出力してプリスケーラーをインクリメントするものですが、470Ωの抵抗が災いして、最高カウント周波数は20MHz位にしかなりません。 

An592gate1

そこで、左に示す様に、AN592が解説する技法を外付けのNANDゲート回路で実現し、この最高周波数が低下するのを防ぎます。 この方法も先人がすでにWEB上で紹介しています。

IC7Aの入力Aにカウントしたい信号を加え、入力Bでこの信号をゲートコントロールします。 カウントソースは入力BがHの時だけ通過しますので、入力Bをカウンター用のタイムゲートで制御してやればOKです。 一方IC7Bは、IC7AがOFFの時、入力BをH→L→Hとすることで、カウンター入力にワンパルスを転送できますので、このパルスでプリスケーラーをインクリメントさせます。 このようにゲート回路を組み、プリスケーラーの分周比を1/64にすると、470Ωの抵抗の場合、22MHzくらいまでしかカウントしなかったのが、110MHzくらいまでカウントするようになりました。

次にタイムゲートを作成する為に、ディスクリートの水晶発振回路をTCXOに変更します。 TCXOは秋月で2個、350円で売られていた、26MHzのセイコーエプソン製ですが、そのまま使うには多少難点があります。 まず、SMT用の極小品ですから、ハンダ付け作業はかなり気を使います。 うっかりすると、端子と金属カバー間をショートさせてしまいますので、かなり先細のコテが必要です。 また、出力が0.8Vpp以上となっていますが、実測で0.9Vppくらいしかなく、そのままでは、PICへ入力できません。 従い、TCXOの出力を1石アンプで増幅する必要があります。 もちろん、このTCXOの電源の為に3.3VのLDOも必要となります。

回路図 Fcounter2.pdfをダウンロード

Txco_pwbこれらのハード変更を行ったのが、左の基板です。

追加したTCXOもNANDゲートもLDOも米粒より小さいサイズなので、良く見えません。 NANDゲートは5pinパッケージに2入力NANDゲートが1個だけ入った物を2個使っています。 LDOは不動在庫していたトレックス製の4pinパッケージ品をつかいましたが、これもTCXOの1/4くらいのサイズです。 これらを、拡大鏡を使いながら、基板にマウントして、テスターで導通確認を行い、動作確認するまで足かけ2日かかりました。

そして、10MHzの標準電波BPMでゼロビートを取ったDDSの信号をこのカウンターに入力し、指示が10,000,000Hzに最も近くなるようにゲート時間を調整した結果が下の写真です。

10mhzcnt

ゲートタイムのカウントはタイマー4,5による32bitカウンターで行いますが、C言語で作成されたプログラムの実行時間はかなり長く、これらの実行時間を含めて、1秒とか0.1秒の時間を作る必要があります。 従い、ゲートタイムカウントモードに入ったら、全ての割込みを禁止した上で、タイマー4,5によるカウント時間は、計算で得られる時間より短めに設定し、細かい時間調整はNOP命令の数で行います。 このようにしても1Hzの差は解消できませんでしたが、それでも0.1ppmの誤差まで詰める事ができました。 50MHzの場合5Hzの誤差ですから、問題なく使う事ができます。

ソースファイル F-counter2.cをダウンロード

カウンターのゲートタイムはプリスケーラーなしのとき1秒と0.1秒のみです。 1秒の場合、1Hz単位、0.1秒の場合、10Hz単位で測定できます。 100Hz単位ならゲートタイムを10m秒に、1KHz単位なら1m秒に設定し、データの更新を早くできますが、100Hz単位、1KHz単位いずれの場合でもゲートタイムは100m秒とし、計測データの未表示部分を切り捨てています。 1/64プリスケーラー付の場合、640m秒のゲートタイムのみで、100Hz単位、1KHz単位いずれも同じゲートタイムです。 このようにすることで、不要な表示チラツキを抑制できます。 また、1秒ゲート以外は全て5回分の計測値の平均を表示させています。

このカウンターは1GHzまで測定できますが、信号源がないので、実際の誤差は判りませんでした。 手元のCAA500mk2を接続すると505MHzくらいまでは測れます。プラスマイナス1KHzくらいは一致していますが、このカウンターが正しいのかCAA500mk2が正しいのかは???です。 逆に言えば、CAA500mk2のカウンターは以外と正確であると言えます。

2019年1月

ゲート時間を一定にしておき、表示桁のみ切り捨てる方式の場合、例えば、99.9の小数点以下を切り捨てると99になりますが、これを1/4分周器を通した後、測定すると24.9から9を切り捨てる事になり結果は24となってしまいます。 ここは25と表示して欲しいので、切り捨てではなく四捨五入する事にしました。 この例では99.9は100と表示され、1/4分周後の表示は25となります。 

修正したソースファイル F-counter3.cをダウンロード

2019年5月

表示に使っている99円のLCDの最上位桁の文字が欠けて数字にならなくなりました。 そこで、このLCDを16文字2行のLCDへ交換する事にしました。 LCDのサイズが大きくなったので、ケースは100円ショップで入手したアクリルケースで作り直しです。

32bitカウンター+6bitプリスケーラーにより、周波数カウント用のカウンターは38bitとなりましたので、カウントそのものは1GHzでも1Hz単位で行えますが、PICの上限周波数が110MHzですので、1Hz単位で表示出来るのは110MHzまでです。

LCDがi2cインターフェースに変わりましたので、PICのi/oの変更も必要となり、ソフトもLCDドライブを全面的に変更する事になってしまいました。 このカウンターを使う時、いつもDC12Vの電源を用意する必要がありましたが、今回、ケース変更に伴い、電池を内蔵させ、どこでも使えるように改良しました。消費電流は50mAくらいですので、追加した電源スイッチにより、1年以上は電池交換なしでつかえそうです。

Fcounter3

LCDに追加した機能は、選択されたBNC端子がA かBかを表示する事。 それに電池の電圧を小数点を省いて表示させます。 左の写真は、50MHzのDDS(すでに26MHzのTCXOに変更し、10MHzでゼロビートを取った改良品)の信号を測定した時の表示ですが、6Hzの誤差で表示しています。 TCXOの温度ドリフトはゼロではありませんが、当初より大きくドリフトはしていないようです。

右端に086と表示しているのは電池の電圧で8.6Vである事を示しています。この電池はすでに3年以上経過した低周波発振器用に使っていたのですが、使用頻度が少なかった為、まだ9Vちかくあります。 カウンター回路は6Vの電圧まで動作しますので、さらに1年くらいは使えそうです。

変更した配線図 Fcounter4.pdfをダウンロード

変更したソフト F-counter_i2c-LCD.cをダウンロード

 

  

2019年10月

しばらく使っていましたら、「Hz」の文字付近の下に、白い雲が現れるようになってきました。 LCDのガラス面に歪が発生しているようです。 コントラストも薄くなってきたようですので、再度このLCDを交換する事にしました。

Ng_lcd

New_lcd

今までのLCDはI2Cインターフェースでしたが、手持ちのLCDは4bitパラレルのインターフェースしか有りませんので、過去のLCDのソフトが使えるように、またPICのi/oを変更し、かつ、パネル化粧も、新しいLCDに合わせて作り直しました。

左が、その完成品のパネルとなります。

LCDは秋月から購入したものでしたが、コントラストがかなり改善されました。

電池を実装したまま、外部DC電源のプラグをDCジャックに挿入すると、電池は回路から切り離されるのですが、同じDC電源で動作している発振回路の周波数を測る為に、プローブをつなぐと、このプローブのGNDラインが電源スイッチをショートする事になります。プローブをつないだまま、外部電源からのDCプラグを抜くと、電池から電流が供給されっぱなしになり、1日以上放置すると、電池が液漏れしてしまいました。  対策は、電源スィッチを2回路にし、OFF時は、DCジャックのGNDラインも切断する事にしました。

最新の配線図 Fcounter6.pdfをダウンロード

最新のソースプログラム F-counter_ACM1602K-LCD.cをダウンロード

簡易型の7MHzのAM送信機専用の周波数カウンターも作成しました。 配線図とソースコードは

VXO再検討 を参照下さい。

INDEXに戻る

2016年6月25日 (土)

VXO再検討

<カテゴリ AM送信機(PWM方式)

PLL VFOを試作し、キャリア近傍の不要輻射の為、採用を断念した代わりに、可変の拡大が可能なVXOについて、再検討する事にしました。 PLL VFOの時取ったVXOの不要輻射が以外と良い事に気付いた事によります。

現在のVXOは、いわゆる「スーパーVXO」と言われる、水晶発振子を2個パラに接続した回路で、11kHzの可変範囲を確保していましたが、AMのもうひとつの常用周波数である7181KHzはカバー出来ていませんでした。

まず、60PFのトリーマーをSVC203CというONセミコンのバリキャップに変更してみました。バリキャップの最大DC電圧を8Vとした時の可変範囲は7197KHzから7186KHzとなり可変範囲は変わりませんが、全体が1KHzほど低い方へシフトしました。 この状態で単純に水晶発振子を2個から3個に増やしてみました。 すると、最低周波数が7165KHzくらいまで拡大しましたが、最高周波数は7194KHzくらいとなります。 メインの7195KHzをカバーできないので、この方法は採用できません。

Vxoschema

FCZ研究所の機関紙でコンデンサを追加して、可変範囲を拡大するアイデアを紹介していましたので、水晶2個の状態で、水晶とコイルの接続点からGNDへ4.7PFを追加して見ました。 すると、周波数可変範囲は200KHzを超えて7000KHz以下まで発振し、かつ最高周波数は7195.2KHzとなりました。 しかし、7100KHz以下の周波数では、かなり不安定で、CWモードでのビート音もなにか不安な音です。

そこで、このコンデンサを2.7PFにした上で(赤枠で囲んだC7)、バリキャップ電圧を上げる為に9Vの専用3端子レギュレーターを追加しました。 その結果、

最高周波数:7195.5KHz  最低周波数:7159.4KHz

となり、ビート音も澄みきっています。 目標とした7195と7181はカバーできましたので、どうやら使えそうです。

使用した水晶発振子はaitendoで扱っている uxcellのHC-49Sタイプ 7.2MHz

47uHのコイルはRSで扱っているTDKのNL453232T-470J-PFというSMTタイプです。

発振回路に使われているトランジスタは、東芝の2SC2712Yですが、リードタイプの2SC1815Yと同等品です。

その後、このVXO回路を200W AM送信機にも使いましたが、気温の低下と継時変化により、最高周波数7195.0KHzが確保しにくくなってきました。 よって、クリスタルを2個から1個にして、C7を2.7Pから3.9Pに変更しています。 この変更後の状態で、周波数は7196.6KHzから7173.0KHzまでをカバーしています。

アナログ回路でベース抵抗を決定する方法を紹介しておきます。 これを知っていると、大抵のトランジスタやFETを好きなように使う事が出来ます。

Trc

左の回路に於いてR1を可変抵抗器にしておきます。 可変抵抗器は100KΩから1MΩくらいを用意しておき、回路の状況で使い分けます。判らない時は1Mか500KΩくらいでトライします。

コレクタにテスターを当てこの電圧が以下の式に合うようにR1の可変抵抗を調整します。

VC =VE + (VCC - VE) / 2

R1を可変するとVEも変わりますので、都度VCとVEを見ながら行います。 VCが目的の電圧になったら、R1を取り外し、テスターで抵抗値を計ります。 そしてE12シリーズの抵抗で最も近い値の固定抵抗に置き換えます。 R3が無い時はVEが常にゼロですから、VCはVCCの1/2にすれば良いのですが、温度安定度が極端に悪くなりますので、最低でも数10Ω以上の抵抗を挿入必要です。  この方法はRLが抵抗の場合の時のみしか使えませんが、オシロが無くても最適バイアスに調整出来ます。 もし、RLがコイルの場合、アナログ信号を入力から加え、コレクタ端子をオシロでモニターし、上下が均等にクリップするようにR1を決めます。 高周波回路では可変抵抗器をリード線経由で接続すると条件が異なってきますので、この時の誤差を最少にする為、ベースのすぐ近くに予想される抵抗の1/3くらいの固定抵抗を入れ、これにシリーズに可変抵抗器をつなぎます。 調整完了後、固定抵抗と可変抵抗の合計抵抗をテスターで測り、固定抵抗に置き換えます。

E12シリーズ抵抗:1 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 の数値をベースとする抵抗値。この数値で1Ωから10MΩくらいまで量産されている。

回路がエミフォロの場合、VCC=VCですからVEがVCCの1/2になるようにR1を選べばOKです。 回路によってはR2が無い時もありますが、やり方は同じです。 

回路例と同じトランジスタやhfeランクが手持ちしていないとき、または、RLやR3を変更したい時便利です。 VCの値は厳密にやる必要は無く、とりあえずVCCの1/2程度に設定した後、VEを測り、その分だけ若干補正する程度でOKです。 このようにして設定したバイアス状態は温度変化に対してかなり安定に動作します。

余談ですが、この回路の低周波(100KHzくらいまで)ゲインは簡略的にRL/R3で求まります。 ただし、R3が数十Ω以上でC3が無い場合です。 また、最大ゲインはhfeに関係なく30dB以下です。 

Vxo_front

周波数可変は10KΩの可変抵抗で行いますが、CWモードでSメーター最大ポイントに周波数を固定しようとすると、270度回転の可変抵抗器では、かなりクリチカルです。 そこで、この可変抵抗器を3回転(1080度)のヘリポットに変更しました。 これでかなりスムースに周波数設定が出来ます。 周波数カウンターを付ける予定でしたが、発振出力を引き回しますと、隣接周波数のノイズフロアーが増える現象が発生しますので、周波数カウンターは無しで、昔のVFOチューニングと同じように、受信中にVXOのみONして、相手局にゼロビートする周波数に合わせるか、CWモードでSメーター最大ポイントにチューニングします。

Vxo_osc

Vxo50m

Vxo10m

左上は改造したVXO回路、真ん中は7170KHz40W時のスプリアスデータです。一番右は、10MHzスパンの近傍不要輻射データです。 変調をかけてもきれいな音をしています。

全体の回路図 AMTX_PP3.pdfをダウンロード

2016年8月13日追記

Amtxwithcounter1

送信周波数を受信機を使って合わせるキャリブレーションは使いにくい為、強引に周波数カウンターを追加しました。 しかし、40W送信時に   プリアンプにE級アンプのスプリアスが混入し、カウンターが正常にカウントしません。 VXO回路と周波数カウンター回路を完全シールドしないと使い物にならないようです。 この送信機はオープン構造でシールドは無理ですので、送信時は周波数カウントを停止させ、キャリブレーション時の周波数を保持する事にしました。 受信時もVXOは停止していますので、この時もキャリブレーション時の周波数表示を保持させます。 これをやる事で、カウンターにはつきものの、最下位桁のチラツキも無くなりました。 PICは40W出力時でも誤動作無く動いています。

Amtxwithcounter0

Amtx_cntr

左のスペクトルは、周波数カウンター付で、送信状態にしたものです。 不要輻射はカウンターが無いときより若干増加しますが、一応スペック内ですので、良しとしました。 上はLCD基板と一体化したカウンター回路です。

使用した周波数カウンターの配線図 VXO_Counter.pdfをダウンロード

周波数カウンターのソースファイル TX_Fcounter.cをダウンロード

7MHz E級アンプ QRO計画 1 に続く。

INDEXに戻る

2016年6月11日 (土)

TS850 スタンバイSW動作せず

<カテゴリ:TS-850>

久しぶりのトラブルです。 TS-850SをAM受信専用機として利用していますが、送信する時は、受信部をミューテイングする事はもちろんですが、送信もされないように内部設定していました。 本日、AM送信機を送信にしたのに、TS-850Sの受信ミューティングが動作しません。 ハウリングが起こり、Sメーターは+60dB以上を示します。 1週間前はOKだったのに。

Acc2_schema_2

このAM専用受信機のスタンバイ機能はRTTY用のスタンバイ機能を使っています。動作しないスタンバイ端子のホット側の電圧を計っても0V。 C214の両端も0Vです。 内部で異常が起こっているようです。 セットの底板を外し、配線図と基板図と現物を照合していくと、電解コンデンサC182の底当たりで断線しているような気配です。 この電解コンデンサを取り外してみました。

C218ura1

C218ura2

Elna_ecap

左上が電解コンデンサを取り外した直後の基板状態です。細いストリップラインが腐食しています。真ん中はこの腐食部分をふき取った状態で、一見つながっているように見えますが、テスターで当たると導通は有りません。 右は取り外した問題の電解コンデンサです。 漏れていた電解液をふき取った後なので、きれいに見えますが、ふき取る前は明らかに電解液だらけでした。

 

Stanbyng

Jumper

 基板上では左の基板図の赤のラインの途中が断線しているものでした。

修理はC182を新品の16V470に変更した上で、リード線で、この断線したラインをバイパスしてやりました。

このモデルの修理事例を見ていると、電解コンデンサの事故が結構あります。 メーカーはELNAというかなりしっかりした会社の製品なのですが、同じ時期のニチコンやケミコンより事故例が多いようです。

結局、この問題で、本日はAM交信が出来ませんでした。

INDEXに戻る