AM送信機(PWM方式) Feed

2017年7月 9日 (日)

7MHz D級アンプQRO計画 8 (200Wつづき)

<カテゴリ AM送信機(PWM方式)

STP17NF25を手配できましたので、同時に手配した2W 1Ωを含め改造しました。

Stp17_1ohm

ドレインがむき出しですので、シリコンシートを敷き、プラスチックビスで止めてあります。

この状態で100Wのテストを行ったのですが、パワーが依然のモールドパックほど出ません。30V電源で以前は最大140W出ていましたが、このFETでは100Wしか出ません。

何が原因なのか調べている内に、突然出力なしに。 

突然死んだ理由は6石のFETの内の1石がゲート、ソース間ショートでした。 その原因はまたしても熱破壊。 壊れたFETを止めてあったプラスチックネジが伸びて、グラグラしています。 FETの熱でプラスチックネジが伸びてしまい、FETが放熱板から浮いて、熱破壊したものです。

対策としては、絶縁ワッシャを追加し、金属ネジに交換するしかありません。 手持ちの絶縁ワッシャの外形は4mm、FETの穴径は3.8mm。 そこで、ボール盤を使い、FETの穴径拡大を行い、下の写真のように、ビス止めしました。

Stp17_biss

今度こそ、大丈夫と40Vの電源電圧で150Wのエージングを開始したら、数分で、またも出力なしに。 今度も熱破壊です。この原因は絶縁ワッシャの高さがFETのドレインの板厚より高いものが有り、力いっぱいビス締めしたのに、FETは放熱板に全く密着しなかったものでした。 このワッシャの高さの問題は、6石中4石も該当しましたが、壊れたのは、幸い1石だけでした。

Add_fan

絶縁ワッシャの高さ問題を解決したのに、まだ、30分エージングでFETが破壊するという問題が継続しています。 やはり、ファイナルステージの放熱板の強制空冷は必要な気配です。 後方へ移動したファンは厚さ25mmの8cmサイズでしたが、手持ちのファンは厚さ15mmの7cmサイズしかありません。 風量は半分以下ですが、無いよりはマシと、このファンを当初のファン取り付け位置に追加しました。

この対策で、とりあえず30分以上は動き始めましたので、電源電圧40Vで200Wのエージングを開始しました。 しかし、数分もすると180Wまで下がってしまいます。 やはり、前回のモールドパックのFETより、ドレイン、ソース間飽和抵抗が大きくなっているようです。 FETは同一品種ですので、単純にロットのバラツキと思われます。 

下は200W送信時の高調波、及びPWMの250KHzの漏れです。

200w_2ndhrmo_2

200w_lpfreak

FETを交換したら、プッシュプルのバランスが良くなったようで、内臓のLPFのみで第2次高調波レベルを-54dBまで下げる事ができました。 ここは、外付けの6次LPFを追加する事により完璧にする事が出来ます。 また、PWMの250KHz漏れは、-52dBです。一応、スペック内ですが、さらに改善できないか後日検討する事にします。

 

エージングが1時間40分を過ぎました。 部屋の中は、サラダオイルが半煮え状態の匂いが漂っています。 

Amtx200wasing

その中で、エポキシの焼ける匂いがし始め、またまた終段のFETが壊れてしまいました。 もうSTPタイプのFETは有りませんので、壊れた2石をSTFタイプに交換し、かつ7cmのファンは、新に手配した8cm品に交換しました。 また、PWMのLPFへの配線が長くなり、250KHzの漏れにも影響しますので、4700uFの電解コンデンサ2個は廃止し、厚みが厚くなったLPFを変調アンプの近くまで移動しました。  下は、その変更後のシャーシーです。 ファイナルの放熱板を強制空冷したおかげで、エージングしてもパワーが下がるという問題が出なくなりました。

Iamtx200_0722

PWMの250KHzキャリア漏れが以前の50W機に比べかなり大きいので、ここの検討を行いました。 

改めてRFアンプのインピーダンスを実測したところ、1.6Ωとでました。 今まで1.8Ωで計算していましたので、若干減衰不足がありそうです。 オーディオの周波数特性を無視して暫定的にコイルを追加したり、高周波1点アース(アンテナ端子のみでシャーシのGNDに接続し、電源部からファイナルステージまでのGNDを全てシャーシから直流的に浮かす)を試した結果、改善できそうです。 やはりここは手持ちのコンデンサに合わせるような妥協レベルのLPFではなく、しっかり計算通りのLCで作ってやらないと、思惑通りにはいかないと、フィルムコンデンサの手配をする事にしました。 (これは間違いでした。後述のごとく計算通りにはいきません)

200w_lpf 上は、インピーダンス1.6Ωで再計算したLPF定数です。 そして下は巻きなおしたコイルです。 コアは2重に積み上げてあります。  写真では、巻はじめと巻き終わりのワイヤーをロックタイで縛ってありますが、この状態では、-60dBのアイソレーションは確保できませんので、実装段階では、巻はじめと、巻き終わりの間に空間ギャップを設け、入力と出力の結合が多くならないようにまき直してあります。

250lpfnew

このLPFを実装して変調をかけると、音声がかなり歪みます。また、オーディオの周波数特性もかなりハイカットになってしまいました。 原因を調べる為、電源電圧を12Vまで下げたり、コンデンサやコイルの変更を行った結果、PWMアンプの出力に直につながるL1 13.5uHが小さすぎるのが原因のようです。 ここは、以前の検討で、容量性リアクタンスや抵抗成分でGNDへパスすると、変調波形が歪んだり、変調度が浅くなる傾向がありました。 そこで、試しにL1とL9を入れ替えてみました。もちろん、Lの後にくるコンデンサも一緒に入れ替えました。 結果、歪もオーディオの周波数特性も改善しました。  海外のWEB情報によると、PWMアンプに直接接続するインダクタの値は非常に重要で、小さすぎるとオーディオに歪を発生させるので、歪が発生しないインダクタを選択しなければならないと書かれていますが、いったいいくらのインダクタがベターなのかは記述はありませんでした。 今回はオシロで波形をモニターしながら、歪が起こらないインダクタになってはいますが、最適なのかどうかは解りません。 ちなみにこのインダクタを50uHくらいまで大きくしてみたところ、聴感で明らかに歪が増えましたので、また元の33uHに戻しました。 そして、このインダクタを最初に決めてから、PWMのキャリアレベルが60dB以上減衰するように後段の定数を決めるのだそうで、バターワースLPF回路を最適計算した定数では駄目なようです。

Lpf_01

このようにして作り直したLPFによる250KHzキャリア漏れが心配でしたが、左のように-58dBくらいまで改善できました。

 

そして、再度エージングにトライし、2時間の目標も達成できました。 部屋中がサラダ油の半煮えの匂いが立ち込めています。

このエージングの中で、男性ボーカルが変調されると歪が増加する現象がみられました。 原因を調べてみると、出力が大きくなった分だけRFがオーディオ回路に回り込んで、それが低域での歪となっているものでした。 対策は、オーディオの差動入力にまだRFバイパス用のパスコンが入っていない所がありましたので、リミッターIC TA2011の2-3pin間、及びPWMアンプの3-4pin間に1000PFのコンデンサを追加しました。 TA2011の入力部にはIC内部で20PFのコンデンサがもともと入っていたのですが、さすがに200Wの出力では対策不十分だったようです。 結果、TS-930Sによる受信モニターでは歪を感じ取る事が出来ないくらい改善しました。

配線図AMTX_200W_2.pdfをダウンロード

左下は200W出力時、630Hzにて最大変調状態、右下はリミッターアンプが動作している状態での音楽最大変調時の波形です。音楽信号ではほぼ100%変調されており、かつ最大パワーは800Wをキープしています。

200w95mod

Music100

ところで、見落としたもうひとつの大きな問題がありました。 使用しているアンテナシステムは耐圧問題で苦労したシロモノで100Wピークをかろうじて維持出来ているものですから、800Wピークはとてもカバーしきれないと思われます。 7MHzに限って言えば、前回の50W(ピークで200W)に持ちこたえていますが、実際のところ、100W(ピーク400W)に持ちこたえられるかも確認出来ていません。 これは、総通の許可が下りてからになります。

ハード的に800WピークのAM送信機は出来ても、実際はON AIRできないというジレンマに落ち込みそうです。

2017年12月

このAM送信機の保障認定をTSSに申請してからすでに5か月を過ぎました。途中で問い合わせがあり返信したのですが、その後のアクションが有りません。 そこで、TSSへ直接電話したところ、2日後には保証が完了した通知が来ました。 遅いと感じたら電話するのが一番のようです。

総通に追加申請して10日経過した時点で審査終了となり、追加の許可が下りました。 さっそくQSOと、従来のMTUを使用しない、逆Vを臨時に架設し、100W出力でCQを出しましたが、QSO出来ず。やっと夕方、1局と交信できました。 とりあえずピーク400WはOKのようです。 また、従来のMTU使用のアンテナに切り替えて送信しても、OKでした。 当分は100Wで運用していきます。

休日にやる事がなくなりましたので、50MHz用AM PWM変調の可能性について遊び始めました。

2021年7月

40V 15Aくらいの電源が確保できるようになりましたので、久しぶりに200W運用をすべくテストすると、180Wくらいしか出ません。 電圧を44Vまで上げると、200W出ましたので、気を良くしてQSOに使うと、5分くらいの送信の間に、ヒューズが飛んで壊れてしまいました。 壊れたのはSTF17NF25というモールドパックのドレイン電力損失が35WしかないFETでした。 取り外すと、シリコングリスが乾ききっており、持ちこたえる事が出来なかったようです。 本来はSTP17NF25という品番でなくてはならないのに、手持ちがモールドパックしか無かったので、代用したものでした。 正規品をRSに発注しようとチェックすると、もうこのFETの取り扱いは止めてしまっていました。 仕方なく、同等品となるSTF19NF20をモノタロで見つけましたので、これに交換する事にしました。 3パラ、プッシュプル 6石全部を交換です。 出力は40Vの時、190Wくらいです。 

この状態での配線図です。 ドライバー段の9V 3端子レギュレーターはスルーして、TC4426のVCCは12Vを直接かけています。

AMTX_200W_3.pdfをダウンロード

2022年2月

電源をONしたら、VXOが即動作しますが、この信号が受信機で聞こえるようになりました。 原因は、常設のベントダイポールが、電線より一番遠い所に設置された事により、外来ノイズが減少し、微弱な電波も受信できるようになった為、微弱なVXOの信号も聞こえてしまうと言う現象です。 そこで、周波数カウンタの校正をやった事もありますので、スタンバイ状態でのVXOはOFFにする事にしました。 送信開始の1分くらいは約50Hzのドリフトがありますが、そこはAMだからと割り切る事にします。

SDR用200Wリニアアンプの電源として、ACDCコンバーター式の72V 8.9Aの電源が出来上がりましたので、この電源の36Vタップを使うと、36V 20AというDC電源が実現できます。 SDRのリニアアンプとPWMのAM送信機を同時に使う事はありませんので、以後、36Vの電源で160Wの出力が出るようにして使います。

 

配線図 AMTX_200W_4.pdfをダウンロード

 

INDEXに戻る

2017年6月25日 (日)

7MHz D級アンプ QRO計画 7(200W)

<カテゴリ AM送信機(PWM方式)

薄膜高周波抵抗を使った250Wのダミー抵抗が断線し、エージングは頓挫していましたが、ヤクオクで同等スペックの抵抗が売りに出ていましたので、さっそくこれをゲット。

205nb_dummy

Rf_250w_swr_gr_4

 

左上が入手した250W薄膜高周波抵抗を放熱板に貼り付けた状態。右上はこのダミーをCAA-500mk2でSWRを測定した結果です。HFはSWR1.0、435MHzでもSWR1.3になっています。 とりあえず、100Wで10分程度慣らし運転して異常ありませんでしたので、当ダミーは今後AM送信機のエージング試験には使わない事にします。

エージング用はもう少し乱暴に扱っても壊れにくい、オイル冷却のダミーロードを作る事にしました。

ダミーロードができたので、送信機本体も200W対応に向け改造しました。

Amtx200wv2 

上はその改造後のシャーシです。 まず、シャーシの真ん中で空気を掻き混ぜていたファンをバックパネルに移動し、内部の熱された空気を外へ吸い出すようにしました。 その関係で変調回路のLPFは元ファンの有った場所へ移動です。

TDKのLINEフィルターは効果的に動作していましたが、定格電流が5Aでしたので、140Wでのエージングで、かなり熱くなっていました。 そこで、このフィルターを10Aタイプに変更しました。サイズが大きくなったので、電解コンデンサは移動してあります。 このフィルターは、接続したDC電流計が正しく動作するかどうかでその効果は確認できます。もし、挿入した電流計が異常値を示すようなら、決まって高周波が漏えいし、色々な障害を生じさせる事になります。

電源として使っているTS-930Sには44000uFの電解コンデンサが使われており、これに9400uFのコンデンサをパラに追加していましたが、変調のピークをカバーするほどの効果は有りませんでした。 そこで、今回30000uFのコンデンサを追加しました。 ピーク電力の増加を期待したいところです。

ケースの底板に穴を明け、ここから外気を吸い込み、後方のファンへ抜けるようにしました。

Amtx200wv3

Amtx140wasing

そして、上は、強制空冷状態で140W連続30分のエージング風景です。ケースの天板は手の平をずうと押し付けていられるほど温度が下がり、この後、2時間続けても問題なしのレベルまで改善しました。

Amtx200wpower

30Vの電源を40Vにアップする為、12V 30Aのスイッチング電源を手配しました。 これをTS-930Sの電源にシリーズに接続して使います。 現状のままでは42Vになってしまい、12Vを作るDC/DCの最高電圧40Vをオーバーしますので、TS-930Sの電源の電圧調整部分を改造し、26Vから30Vまでを可変できるようにしました。 またAC/DC自身も10Vから14Vまで可変できますので、両方の電圧を調整して最大40Vに設定しています。 

まず、30V+10Vで確かに200Wでるのか確認しました。 

Acdc12vpower

200woutput

左上が臨時に追加した12V AC/DCです。 これで40Vの電圧を確保して200Wの出力を得たのが右上のメーターです。 このAC/DCは、アマゾンで2300円くらいで販売されていました。 取説なし、電源コードなし、その上、初期不良で電源ONせずというシロモノでしたが、110/220Vの切り替えSWをカチカチやったら、時々動きます。

Acdcsw

原因は左の写真のように。スイッチが傾いて挿入されており、左側の端子が基板とつながっておらず、かろうじて裏の半田の上に乗っているだけという状態でした。 中を開け一度、ハンダを吸い上げ、スイッチが自由に動く状態にして、きっちりと基板に密着させハンダ付けしました。 また、2か所でアルミ板を放熱板に使っていますが、FETとアルミ板の間はシリコンラバーが挟んでありましたが、アルミ板と外側のアルミケースとの間にはなにもなく、熱伝導が心配になりましたので、シリコングリスを塗り込んでおきました。 動き出せば、コスパは最高です。

 AC/DCの右端に写っているのは、定格5AのAC LINEフィルターです。 これを付けていると、少なくとも7195KHzでのノイズは気になりません。

200w_dc40v_2

200wout630hz_2

 左上が200W送信時の電流値と変調度、右上は630Hz信号による最大変調度の波形です。 電流が常に9Aを超えるようなら、このメーターの目盛をMAX15Aに作る変えるつもりです。

配線図 AMTX_200W_0.pdfをダウンロード

電源から最大パワーを得るには26V+14V=40Vが良さそうですので、この電圧配分でエージングテストをする事にします。

200w9a

実際にテストしたのは、26V+12V=38Vで行いました。 スタンバイ状態で38Vですが、200W送信時には37.2Vまで下がります。

200W出力時の電流は8.8Aくらいです。

ドライバー段の電流を差し引いた状態でのPWM変調回路込みの終段能率は75%くらいです。 特に良い訳ではありませんが、200Wで20分のエージングテストもクリアーしましたので、これから、ダミーロードを心配しながら2時間エージングにトライしてみます。

心配していました、ピーク電力ですが以下のようになりました。

200wcw_2

200w95mod_2

 

左上は200W無変調キャリアだけです。右上は、630Hzのピークがクリップするまで変調度を上げた状態です。オシロの目盛からピーク値は2倍ではなく1.8倍くらいですので、ピーク電力は650Wくらいです。

次に、音楽ソースで確認しました。

Carir200wMusic200w

同じように左が無変調、右がボーカルの入った音楽ですが、ピークは2倍になっております。オーディオのミュージックパワーと同じように、正弦波でない、音声信号では、ピークで800Wは出ているようです。

このミュージックパワーを確認しながらエージングを継続し、約30分経過した時点で、はじける音がして、出力が無くなり、電流も1A以下になってしまいました。 オシロで各波形をチェックすると、終段のゲートドライブ電圧が極端に小さくなっています。また、終段のゲートもドレインと同電位まで上昇しているFETもあります。 各素子を回路から切り離し、それぞれチェックしたところ、

Q2のドレインソース間がショート状態。

Q4,Q5,Q9,Q10,Q11,Q12の内、4本がゲートソース間ショート。

ゲートの1Ω抵抗も6本中4本断線。

断線した1Ωは黒焦げになっていました。 この抵抗に流れる電流はゲート容量をチャージする電流で、ピーク12Vくらいの電圧がかかりますので、単純計算でピーク12Aとなります。実際は回路のインピーダンスなどの影響で、数Aと考えられます、それでもピークで数Wもかかっている事になります。 そこに1/10Wのチップ抵抗を使ったのが原因のようです。 この6本のゲート抵抗が少しずつ断線し、残ったFETに負荷が集中した結果、終段のFET6個中4個が壊れた様です。 また、ゲートとソースがショートした事で、ドライバー段のQ2も壊れたと推察されます。

ここで、インターネットで海外の情報を調べると、皆さん2Wくらいの抵抗を使っているようです。あいにく、2W1Ωの抵抗は持ち合わせしていませんので、とりあえず1/10W 2.4Ωを4個パラにしてしのぐ事にしました。 終段FETの在庫も無くなりましたので、この抵抗も一緒に手配だけはしておこうと思います。

200wtest

修理完了して、200Wのエージングを再開しました。 左は、1リットルのダミーロードを3リットル缶に水を入れ、熱容量を大きくした上で、扇風機で仰ぎながらエージングしている風景です。

そして、約30分で、またも、出力が出なくなりました。 直接の原因は終段のSTF17NF25の1石が全端子ショート状態となり、これにより、他の5石のFETのゲートドライブが停止し、電流が流れなくなったものでした。 どうやら熱破壊です。 ファイナルステージの放熱板は、指を当てていられないほど熱くなっていました。 ファンを放熱板から離し、後方へ移動させたのがいけなかったようです。 そして、この熱で一番弱いFETが死んだのでしょう。

対策はファンを追加するか、STF17NF25モールド品からドレインむき出しのSTP17NF25に変えるかです。 ファン追加は構造の大変更を伴いますので、FETを変更する事にしました。 そして部品手配が出来るまではお預けとなりました。

 

7MHz D級アンプ QRO計画 8 (200Wつづき)へ続く

 

INDEXに戻る

2017年6月17日 (土)

7MHz D級アンプ QRO計画 6 (140W)

<カテゴリ AM送信機(PWM方式)

100Wエージングで、ダミーロードがアッチッチになり、途絶えていた200W出力に向けたテストをやっと再開できるようになりました。 しかし、現在の電源は最大で140Wのキャリア出力しか出せませんので、まずは、140Wでのエージングとしました。

Amtx200w0

シャーシも200W対応に改造しました。

200W対応配線図 AMTX_100W_5.pdfをダウンロード

Dummy2501_2

Dummy2502

6年前に自作したダミーロードはDC-2GHzで250WというRF抵抗を使用していました。 作りが雑なので、145MHzでSWR1.5くらいの性能しか有りませんでしたが、HFで使う分には十分です。 今回これに通風孔を開け、スペアナでモニターできるように出力端子を追加しました。 そして、臨時にファンも付けられるようにし改造しました。

このダミーロードで200Wの連続運転が出来るかは、これからです。 このRF抵抗はすでに生産中止になっており、焼けたらおしまいです。

さっそく100Wでエージング開始です。 音楽を変調し、最大90%くらいの変調度にした途端、抵抗の焼ける匂いです。 送信機本体ではなく、ダミー抵抗のほうから煙が出ています。放熱穴からのぞくと、モニター端子へ設けた2.2KΩの抵抗が焼けて黒くなっています。 この抵抗は1/4Wタイプ。 改めてこの抵抗の電力を計算すると、100W時約2.2Wの電力になり、焼けて当然。 ジャンク箱をひっくり返して、2KΩ 2Wという抵抗を見つけ交換しました。

100Wでエージング中に煙を出したクラニシの電力計を開けてみましたら、まさしく焼けたのは、このモニター端子用ATT抵抗でした。しかも、誰かが追加した1/4Wの抵抗でしたので、これを同じように2KΩ 2Wに変更して、また使う事にします。

Amtx140wmaxmod

Amtx140wout

左上は140W出力時の最大変調度波形、右上はその時の電力計の指示です。

しばらくエージングを続けていると、突然出力が100Wくらいに落ちました。さらに続けると、変調のピークでジーという音と共にどこかが明るくなります。しばらく観察していると、最終段のバリコンVC1の羽根から青白い光が出て放電しているのが見えました。 電源をOFFして放電したところを観察すると、ステーターの羽根が変形し、ギャップが狭くなっている所でした。これを、正常の位置に修正し、全てのギャップが約0.5mmになるようにし、再度トライです。

しかし、今度は、正常なギャップで放電します。放電は変調のピークで発生し、一度発生すると、かなりの時間継続します。 この直列共振回路は思った以上に高電圧を発生させるようです。 対策は、コイルのインダクタを小さくし、バリコンの容量を増やしQを下げるか、もっと耐圧のあるバリコンに変えるか。 

Q3coil

高耐圧のバリコンに変える案は、実現性がありませんので、コイルのインダクタを下げ、Qを下げて発生する電圧の波高値を押さえる案でトライしました。

現在のQは計算で5.9くらい。これを3.4まで下げました。 バリコンは当初75PFくらいでしたが、これを130PFくらいまでアップすると、バリコン両端の電圧は約58%に下がった事になりました。 この状態で140W連続出力でエージングしていますが、異常なしです。

Amtx100wonly1lpf

約1時間くらいクラニシの電力計でエージングしていると、今度はクラニシの内部から塗装の焼ける匂いがしてきます。 200W 3分の仕様では140W1時間はやはりきついみたいです。 ダイアモンドの電力計は、50Wのときクラニシとほぼ指示値は合いますが、クラニシで140Wのときダイアモンドは180Wと指示します。 (ダイアモンドのSX-200は一度ダイオードをオリジナル品から別の物に交換しており、多分これがオリジナルと同じリニアリティを確保できない原因と思われ、私の持っているSX-200だけの問題です) 物置に有ったコメットのCMX-200を持ってきてつなぎかえると、クラニシと指示値は一致しましたので、今後はコメットのCMX-200と自作のダミーでエージングを続けます。

上は100W出力時のスプリアス特性です。 内臓の7次LPFだけの状態で、第2高調波が-50dBギリギリです。 実際に使う時は、外付けの6次LPFを通す予定です。

Amtx140wcur

現在の電源電圧は30V。さすがにTS-930S用の電源は350WくらいがMAXのようで、140Wキャリア出力時のピーク電力520Wは出ません。 オシロをモニターしていても約350Wが最大値となっています。 これから、200Wにパワーアップするには計算上36Vの電圧が必要ですが、合わせて800Wの容量が必要となります。 

とりあえず、この段階では、ここまでです。

TSSには余裕をみて40Vで200Wとして保障認定を申請しました。

ブロックダイアグラム 5.pdfをダウンロード

下は、140Wにて音楽ソースを変調しながら連続エージング風景です。昔からエージングテストは何十回もやってました。 開始してから30分で温度はほぼ飽和状態になり、その後1時間で温度カーブは横一直線となります。この間に、問題が起こらなければ、規定の4時間は達成できます。 現在は趣味の範疇ですので、目標2時間。 2時間OKなら良しとします。

Amtx140wasing_2

2時間のエージングが終了しました。ケース天板は触っていられないほど熱くなっています。 強制空冷の方法を再検討必要です。

幸い、2時間経過した時点でのRF出力は130Wで、140W一定が理想ですが、130Wまで下がったという事は、熱暴走は問題ないという結論です。

次の日、再度エージングテストをすべく、100Wの出力を自作のダミー抵抗へ加えたところ、スパークが起こり、煙を出して、抵抗が断線してしまいました。 いくら定格250Wとは言え、その条件は無限大放熱板の場合ですから、140W連続動作はきつかったのでしょう。 もうこの抵抗は有りませんので、ダミー抵抗も手配しなければならなくなりました。

200Wのエージングに向け、200W連続負荷に耐えるダミー抵抗、強制空冷そして800Wの電源をどうするかが課題となりました。

7MHz D級アンプ QRO計画 7 (200W) へ続く

 

INDEXに戻る

2017年6月 4日 (日)

7MHz D級アンプ QRO計画 5(100W)

<カテゴリ AM送信機(PWM方式)

放熱対策も部品のショート対策も完了した、100W AM送信機をテストしながら性能確認を行える状態になりました。

PLL VFOからドライバーへ14MHzの信号を入れ、ドライバー段のPP回路に12Vの電源をつなぎ、ファイナルの3パラPP回路に5Vの電源をつないでドライバー出力の共振コンデンサをバリコンに変えて、最大出力が出るように調整した状態で、3パラPPの電源電圧を可変してみました。

26w_85mod

左は、26W出力時の変調度最大付近です。これより、オーディオゲインを上げていくと、歪が生じ、100%変調の波形になりません。 前回の50W送信機でもその傾向がありましたが、この100W機はそれよりも悪化しています。 原因追及と対策は全体の確認が済んでからとします。

最初、この変調波形が出てこず、あせりましたが、変調回路保護の為に挿入したR6 1.5KΩが悪さをしていました。このR6が有る時は最大変調度50%くらいでした。 これを廃止したところ、写真のような85%くらいに変調度になりました。 この変調回路保護の抵抗はもう一本あります。R21 2.2KΩがそうです。 後日、この抵抗の値を吟味してみる事にします。

ドライバー段の出力にある直列共振コンデンサC32は、かなりクリチカルで固定コンデンサの置き換えだけでは、最良点に追い込む事が難しいようです。 よってここは耐圧100Vの80PFのトリーマーと56Pの固定コンデンサに変え、今後、色々検討していく中で調整出来るようにしました。

このドライバー信号を受け止めるトランスT2は当初3:1の巻き数比でしたが、ドライバー段の消費電流が1.7Aを超えるので、4:1に変更しました。しかし、電流は1.5Aまでしか下がっていません。 バラック状態で1.2Aでしたので、ここも検討必要事項となりました。

26w_pp

ファイナルの3パラPP回路のドレイン側とGND間に330Pのコンデンサを入れてありましたが、この容量では不足のようで、最終段のバリコンの調整もかなりクリチカルになっていました。 そこでこのコンデンサC4,C67を330Pから1000Pに変更しました。

左がそのときのドレイン電圧波形です。 気持ち、左側へ倒れていますので、まだ最適な状態ではないかも知れません。 今後100Wエージングテストなどを行いながら最適容量をつめていくつもりです。

ここまでの変更対応を行った上で確認出来た最大出力状態は以下のようになりました。

Amtxtest1

この出力は最大値ですので、実際に使用する場合、この状態より少し下げたVdd=14Vで100W出力になるようにファイナルのバリコンを調整するつもりです。

この12V 111Wで1分くらい出力すると、なにか焦げ臭いにおいがし始めました。 まだ壊すわけにはいきませんので、とりあえず、電源電圧を13.8Vにして、変調器をつなぎ、RFアンプには6.9Vしかかからないようにして各部のチェックを続ける事にしました。

100W送信機の回路図 AMTX_100W_2.pdfをダウンロード

今回も激しいハム音が受信機としているTS-850Sからでて、変調された音楽も良く聞こえません。 50W機のとき、DC電源を1本化して対策しましたが、同じようにやっても、全く小さくなりません。 試に隣に置いてあるTS-930Sで受信してみました。 すると、ハム音はぴたりと止まりました。 受信時のハム音はTS-850Sの変調ハムだったようです。 真空管式ラジオの場合、ヒーターの交流信号がDCラインに誘導して、変調ハムという形でスピーカーから聞こえますが、オール半導体のTS-850Sがどういうメカニズムで変調ハムを生じるのか、後日調査する事にします。 このTS-850Sのプリント基板は、新入社員が設計したような基板で、他のKEWOODモデルよりRFフィードバック受けやすくなってましたが、変調ハムが発生するような基板配置やパターン形状があるのかも知れません。

と、論評してる場合ではなさそうです。 電源電圧をいきなり30Vに上げたら、ブロッキング発振のような周波数シフトが発生し、周波数が安定しません。 ファイナルからの信号がPLL回路に誘導し、PLLがアンロックを繰り返しています。 どうも14MHzに周波数を変更した結果、PLLロック状態になるまで1秒くらいかかっています。 この間にファイナルからのRF漏れがPLLループ内に入り込み、周波数とは関係なく、PLLが不安定になっているようです。 これは、もう周波数の関係ではなく、機械的なシールドがどれだけ出来ているかの問題のようです。 残念ながら、メーカー製トランシーバーのようなシールド構造はいまさら実現できませんので、またもPLLは諦めざるを得なくなりました。

(7MHz用は諦めましたが、このPLL VFOは50MHz用として復活しました。)2018年8月

出力は絞り気味ですが、30Vの電源で普通に100W出ていますので、この目標は取りあえず完了しました。 残りはPLLの対策であり、対抗策としてはVXOしかなく、14MHzのVXOをどうやって作るかに方向チェンジです。

前作の50W機のVXOをベースに出力を2逓倍する回路を作ります。 方法はダブラーと言われているトランスとダイオードだけで実現する回路です。

ダブラー付VXO回路の配線図 AMTX_VXO14MHz.pdfをダウンロード

2017年12月追記

時期が冬場になり、室温が下がった事と、継時変化によりVXOの最高周波数が7195.0KHzギリギリになってきました。このままでは、いつか7195.0KHzをカバーできなくなりますので、クリスタルの数を1個削減し、スーパーVXOをやめ、通常の発振回路にした上で、C56を2.7Pから3.9Pに変更しました。 この状態での周波数可変範囲は7196.6KHzから7173.0KHzとなり、当初の周波数範囲から若干狭くなりましたが、高い周波数で余裕が出来ましたので、良しとします。

ダブラー回路のキモはトランスとダイオード及びその負荷抵抗になります。 回路図としては頭に入っていますが、どうやって定数を決めるのかは知りません。 そこで、自我流でやったところそこそこ実用になりましたので、紹介する事にします。

Dobuller1

Dobuller2

左上はダブラーのチップ装着面、右上は左が入力側の7MHz共振回路のトリマとトランス、右が同じく出力側の14MHz共振回路です。

Meganecorein

まず、トランスT1の設計ですが、これは、TDK製のFMラジオ用バランに使われているメガネコアをジャンク箱から探しだし、0.26mmのUEWを4ターン巻いたら約4uHのインダクタになりましたので、1次側を4ターン、2次側を8ターンとして、センタータップを出しました。 1次側のタンク回路として68Pの固定コンデンサと80Pのトリーマーで7.2MHzに共振させ、これを2次側で両波整流しますと、周波数2倍のかなり歪んだ14MHzの信号が得られます。 この負荷抵抗となるR4を10KΩの可変抵抗に変え、出力最大の抵抗を求めます。 この回路では700Ωくらいになりましたので、E12シリーズで最も近い680Ωに置き換えます。

このままでは、次段を直接ドライブできませんので、再度バッファーアンプで14MHz帯のみ取り出します。取り出すトランスT2は1次が3ターン、2次が1ターンです。

Dobuller3

左の波形は、ダブラーの初段Q1の入力部の波形が上で、下がT2の出力の波形です。

両方とも波高値はかわりませんが、出力の14MHzはきれいな正弦波となっています。

また、T2のトランスで送信機ドライバー段のGNDとVXOのGNDを直流的に分離し、GND電流による出力のVXOへの回り込みを軽減させます。

回路定数に82という値を多用しています。 本当は100Ωとか100KΩにしたかったのですが、手持ちの抵抗が残り少なくなりましたので、100とか100Kはどうしても必要な時だけ使う事にし、この回路のように、適当で良い場合はあまり使い道のない82Ωとか82kΩに変えてあります。(82を100に、82Kを100Kに変えても動作はほとんど変わりません。ただし、常に比が一定になるように変えることです。)

Img_3644

左が、PLL VFOを取り去り、半シールド状態でシャーシに取り付け、配線した14MHzのVXOです。 終段からの回り込みなどの検討の為、シールドごと移動する可能性もありますので、配線材は長めにして、束ねてあります。

一応、シールドBOXで完全に囲めるような配慮だけはして置きました。

このVXOの源発振周波数は7MHzですから、ダブラーの前段から周波数カウンターに加え、発振周波数を表示させています。 カウンターは前回の50W機と同じように、CALの時だけ、周波数をカウントし、送信や受信時はCAL時の表示をロックさせています。

周波数カウンター回路図 VXO_Counter.pdfをダウンロード

 

14MHz VXOを使用した100W送信機の回路図 AMTX_100W_3.pdfをダウンロード

Q1314drain0610

VXOが期待通り動き出しましたので、まず、ドライバー段の消費電流と最適ドレイン容量の検討です。 Q13,14の電流と最終段の出力を見ながら、ドレインコンデンサC34,35の最適値を探した結果、容量は262PF付近で最大出力が得られ、またこの時のドレイン電流は1.26Aでした。この時のドレイン電圧波形は左の状態です。 きれいな三角状の波形ではありませんが、この波形の時が一番効率がいいみたいです。 また、このドライバー段のドレイン電流は最終段の出力が最大になるようVC1を調整したとき、最少電流となります。

次は、変調段のLPFの再設計です。 30V電源で100W出ている時の終段E級アンプのインピーダンスは計算で1.8Ωくらいと出ましたので、このインピーダンスでLPFを再設計します。 

Lpf18

今回は手持ちのマイラーコンデンサが2.2uFですので、この容量を使えるようにカットオフ周波数や250KHzの減衰量をADJしました。 その結果、左の表のような定数が得られましたので、カーボニルコアによるインダクタを作り変える事にします。

最終的には30Vの電源電圧を上げて、200Wの出力を狙うつもりなので、コイルに使う銅線もサイズアップし1.25SQのKIV線にします。

しかし、例え低透磁率のカーボニルコアでも数10uH以下のインダクタの場合、目的とするインダクタにピタリと収める事は困難ですので、目標値を最初に超えた巻き数とします。 そして、コンデンサはほぼ計算通りの定数に合わせます。 こうやる事によりカットオフ周波数が低い方へずれますが、250KHzでの減衰量は大きくなります。 計算で出したカットオフ周波数は30KHzですから、これが例え半分の周波数になろうが全く問題有りません。

Newlpfcoil

左上は8.6uH、右上は19.3uHです。 これらの製作に当たり、以前製作したLCメーターが大活躍です。 コンデンサは初段が6.6uF、後段を2.2uFにしました。

この新LPFを実装した状態での無歪最大変調度は以下のようになりました。

New_lpf_mod

オーディオのエンベロープは綺麗になりましたが、最大変調度はほとんど変わりませんでした。また、R21 2.2Kを外してみましたが、最大変調度は変化なしでした。 次はD1,9ショットキーダイオードを増やしてみる事にします。

ショットキーダイオード(SS560V5)をさらに2本追加し、電源電圧も30Vに上げたところ、変調がうまくかかりません。変調段のD級アンプのソースとGND間の波形を見てみると、激しいリンギングが乗っており、+側で10V、マイナス側で-20Vのヒゲがあります。 原因を推察するに、C12のバイパス不足のようです。 その不足の原因がGND廻りの配線が細く、パスコンの役目が著しく落ちている事のようです。 

Amtx100wout

そこで、今までGND配線に使っていたAWG24のワイヤーを廃止し、幅3mm、厚さ0.3mmの銅板に変えてかつ、チップコンデンサ2個パラ付けし、追加したショットキーダイオードも同様に最短で電源ラインのGNDに接続させました。 結果、+側は6Vくらい、マイナス側は-10Vくらいまでリンギングのピークがおさまりましたので、恐る恐る、バリコンを回し出力を増加さると、出力100W時、左のような変調波形となりました。 なんとか前回の50W機と同レベルまで改善できました。

ところが、この写真撮影をしている間に、クラニシの終端電力計から煙が出始めました。 時間にして2分くらいの100W出力でしたが、許容電力を超えたみたいです。 クラニシの取説によると、200W 3分間とありましたので、100Wならかなりの時間OKと思ったのですが、実際は違ったようです。 とにかく、送信を止め、代わりに自作の250WダミーロードとダイアモンドのSX200を持ってきて、検討の続きを行う事にしました。

Amtx100woutpwr

左のアルミの箱が250WダミーBOXです。SX200は105Wくらいを指しています。この状態で、終段のバリコンをさらに容量ダウンの方向に調整していくと、最大出力180Wが得られました。(SX-200の指示は異常値でした。クラニシで確認したところ140Wが正しい値のようです。) しかし、この電源で9Aくらい流れますので、動作が不安定となります。従い、30V電源では120Wくらいを最大として、それ以上出力する時は電源電圧を上げることにします。 

さすがに強制空冷が無い自作のダミーBOXは煙こそ出しませんが、アッチッチ状態です。 とりあえず、100W状態で10分くらいのエージングを行いましたが、ダミーBOXのアルミ表面を触れないくらい熱くなりましたので、エージングを中止しました。

Amtx100wajing_2 上は100Wでエージング中のフロントパネル面です。電流計の振れが異常です。ほんとは5.5Aくらいは流れているのに。 原因は高周波のバイパス不足でした。電流検出抵抗を電源のフィルター前に移しましたら、正常になりました。

FET6石を使った終段E級アンプの放熱板は指で触っても、少し暖かを感じるだけ。変調器のD級アンプの放熱板はそれ以下の温度。この中で一番熱くなっているのは30Vから12Vを作るDC/DCの放熱器と、ドライバー段の放熱板くらいで、どちらも指をずっと当てていられる状態です。 熱設計は余裕が有り過ぎる感じですが、ダミー抵抗がもちませんでした。 これから、200Wでの長時間エージングをせねばなりませんが、その前にダミー抵抗をなんとかしなくては。

100W AMTXの配線図 AMTX_100W_4.pdfをダウンロード

 

7MHz D級アンプ QRO計画 6 (140W) へ続く

 

INDEXに戻る

2017年5月20日 (土)

7MHz D級アンプ QRO計画4(組み込み)

<カテゴリ AM送信機(PWM方式)

バラック状態での確認作業は、トラブルだらけで、手持ちのICやFETをどんどん壊してしまいます。 そこで、ジャンクの測定器の中身を取り除き、その中に、この100W AM送信機を収納する事にしました。

Tx100_shassis

とりあえず、バックパネルにアンテナ端子、送受信アンテナ切り替えリレー回路、7MHz用7次LPFのみを取り付け、パワーアンプやドライバー回路、PLL回路、ファンなどを並べて、概要を把握したら、図面を起こし、メインシャーシやフロントパネルの加工を行います。

変調回路は、前作の50W送信機の終段D級回路を2パラから4パラに変えて実装予定です。

組み立て図が出来たら、フロントのアルミ板や、パワーアンプ部のシールド材料の寸法が判りますので、それから材料手配にはいります。

100txjw_2

 組み立て図が出来ました。 これをインクジェットプリンターで印刷して、アルミ板に張り付け、卓上丸鋸やボール盤、ジグソーを駆使して1日掛かりで組み立てたシャーシが下の写真です。

100wamtxconfig

まだ、各ユニットの配線は出来ておりませんが、主要なユニットは全てマウント完了しました。 ファイナルステージの出力側共振回路のバリコンを調整する為、ホームセンターから6φのアクリル棒を買ってきていましたが、カップリングに挿入しようとしたところ、これが挿入できません。 アクリル棒の直径をノギスで測ると6.3φでした。 やむなく、このアクリル棒をカッターナイフで削り、現物合わせでカップリングに挿入する事に。 幸い、手元に6.3φ用のツマミがありましたので、なんとかかっこうはつきました。

Power_lpf100w

4paramod

左上は、このTX用に手配したコモンモードフィルターです。 右上はFKI10531を4個パラ付した変調用D級アンプです。 あわよくは200WのAM送信機でも使えるようにとの願望も込めて組み立てています。

配線図 AMTX_100W_0.pdfをダウンロード

FET 4パラによるD級変調回路の動作確認ができましたので、いっきに全ユニットの配線を行い、完成しました。

Amtx100wcmp

ケースの外形サイズが430mm x 400mm x 96mmという事もあり、かなり」ゆったりと配置出来ました。構造的にはRFブロックをシールドで囲む事が出来るようにしていますが、これから、100W、あわよくは、200WのAM送信機を目指して、検討するとき邪魔になりますので、まだ実装しておりません。

Amtx100wfront

上の写真はフロントパネルを正面から見たところです。 PLL VFOは正常に動作しています。 変調回路やRFファイナル回路の+Bラインをカットした状態で、スイッチ回路の動作テストを行っている状態です。

PLL VFOからRF ドライバー段へ同軸ケーブルで配線した関係でミスマッチが起き、74HC74をトリガーできませんでしたので、74HC74の前に1石のバッファアンプを置きました。 このトランジスターはAB級くらいで動作していますが、後段がFFによる分周回路なので、波形は気にせず、コレクタ抵抗やベースバイアス抵抗は適当に設定して有ります。 (470とか47kが定石なのですが、手持ちのE12シリーズ抵抗が在庫なくE24シリーズを使いました)

14MHzのPLL回路は一応、RFファイナルより一番遠い所に配置し、かつシールドケースの中に収納しましたが、終段からの回り込みが無い事を祈っています。

送信機全体の回路図 AMTX_100W_1.pdfをダウンロード

14MHz PLL回路図 PLL_OSC_14MHz.pdfをダウンロード

一応、レイアウトと結線はできましたので、出力を絞りながら、仕上げにかかろうと思います。

 

7MHz D級アンプ QRO計画 5 (100W) へ続く

 

INDEXに戻る

2017年5月 3日 (水)

7MHz D級アンプ QRO計画 3

<カテゴリ AM送信機(PWM方式)

13.8Vの電源で100Wの出力が得られるファイナルステージのアンプは完成しましたが、これをTS-930Sにてドライブした場合、7Wの出力が必要でした。 クリスタルOSCの出力でこのファイナルステージをドライブする為には、正弦波に近い7Wの出力が必要となりますので、ドライバーだけでQRP送信機より大きな出力の送信機が必要になります。

7Wの送信機が必要としても電源電圧は12V固定とすると、かなり小さなFETでも出力できる可能性が出てきます。 小電力のFETなら、TC4422やTC4452などの専用のFETドライバーを使わずに、CMOSゲートICだけでドライブ出来る回路が実現できそうです。

そこで、この小電力で入力容量の小さいFETを探すと、RSで見つかりました。

IRFI510GPBFというモールドタイプのFETで最大5Aですが、入力容量はノミナル値で180PFしかありません。 このFETを終段として、7WくらいのRFアンプをプッシュプル回路で作る事にしました。

ドライバー回路付の回路図 7M_amp_3para_driver.pdfをダウンロード

100wdriverfet

実験の途中に過大入力を加えた為、IC1の1番ピン(1A)を壊してしまいました。 そこで、遊んでいたIC2の3A-3B回路を使う事にしましたので、74HCU04の周辺が複雑になっています。 過大入力の保護回路を追加し、無信号時、FETのゲートが常に0Vになるようにクランプ回路を追加してあります。

100Wアンプの入力インピーダンスは3.5Ωくらいでしたので、ドライブ用FET Q5,Q6を入力容量の小さいIRFI150に変更したところ、5.5Ωくらいまで上昇しました。

T2の巻き数比は3:1ですから1次側から見たインピーダンスは約50Ωです。 ここにQが約3.5くらいの直列共振回路を経てT3につながります。 T3の巻き数比は1:2(実際は0.5:1)ですから、T3の1次側は12.5Ωとなり、ここに12Vを加えますと、最大9Wくらいまで出力をとりだせますので、直列共振回路の共振周波数をずらして出力を調整します。

この状態で7Wの出力が出るように検討した回路が添付の回路図です。

L2はカーボニルコアに0.6φのUEWを巻いて4uHのコイルにし、直列共振のコンデンサC7はとりあえず、最大350PFのバリコンを使用しています。

100wdrivertop2

100wdriverback2

左上がRFトランスにTS-930Sのパワーアンプで使われていた入力トランスを使用した、7W出力のD級PPアンプです。 右上はその基板の裏側で、大きな部品は74HCU04 2個と5Vの3端子レギュレーターくらいです。 不要インダクタの発生を抑える為に、蛇の目基板の配線は出来るだけ銅箔テープで行っています。

Gate_drive_7wamp

左は、ドライバー出力のLC共振回路のVCで、終段のFETのゲート電圧の波形が上下で大きく崩れないように調整した時のゲートドライブ波形です。

波高値は5Vppくらいです。 ここは7Vppくらいは欲しいところですので、 終段が動作状態になってから、直列共振回路を調整する事にします。

この状態の時のドライバー回路の消費電流は電源電圧12Vで0.46Aくらいでした。 約5.5WのDC入力ですから、仮に効率90%としても5Wくらいしか出力していませんが、なんとか終段FETのドライブが出来ています。

Q5,Q6のゲート電圧を7Vppくらいまで上げようとすると、ゲートのドライブ電圧のデュティが変わってしまい、均等なドライブが出来ない事が判りました。 原因は74HCU04の初段に加えられた正弦波の電圧値が変わると、このデュティが変わってしまうという問題です。 

アナログ的な対策をいくつか検討しましたが、バラツキの要素を取り除く事が出来ません。 

恒久対策としたのは、RF信号は14MHzで発生させ、これを途中で1/2にして、デュティを50:50に強制的に合わせこむ方法です。

新回路図 7M_amp_3para_driverPLL.pdfをダウンロード

100wdriverback3

左の基板で右上に追加された小さな基板が74LVX74です。 以前実験した2mまで使えるデジタルSWR計用の基板から切り出しました。 このICは150MHzくらいから分周に使用できます。ICは2個のFFを内臓していますので、配線は2個を直列に接続した1/4分周器となっていますが、今回の回路では、1/2分周部分から出力を取り出しています。

TS-930Sから14.4MHzの1W以下の信号を加えて、綺麗なFETドライブ波形が得られました。 実際に使う時は、以前試作してお蔵入りとなっている7MHzのPLL VFOを14MHz用に変更して使います。 前回は原発振周波数とパワーアンプの出力が同じ周波数でしたので、出力段からVCO回路へ回り込みが発生し、キャリア近辺のスプリアスが増えると言う問題で使えなかったのですが、今度は、出力周波数とVCOの原発振は異なります。 出力周波数の2倍の高調波がVCOと重なりますが、そのレベルは30dB以上低くなっていますので、多分大丈夫だろうと予想しています。

ジャンクボックスの中から、以前作成した7MHz用PLL VFO基板を引っ張り出し、ハードと、ソフトの変更を行いました。

PLLの原発振は14MHz台ですが、LCD表示は、その周波数を1/2分周した7MHz台となります。 14MHzも1KHzの周波数スパンで可変できますから、これを1/2分周すると、7MHzは0.5KHzスパンで変化する事になります。

Pll14pcb

Pll14out

左上は、PLLの原発振を14MHzに変更した基板と7194.5KHzを表示しているLCDです。右上はこの時のPLL VFOの出力波形で周波数は14389KHzです。 波形は上下非対称で歪んでいますが、この後段で1/2分周しますので、デュティには影響有りません。 レベルも7Vppもありますので、ATTが必要になるほど有り余っています。

14MHz PLL VFOの回路図 PLL_OSC_schema14.pdfをダウンロード

14MHz PLL VFOのソースコード PLL_VFO14to7.cをダウンロード

PLL基板、ドライバー基板、終段基板をつないでみました。以下はその時の波形で、左から、Q9,Q10のゲート電圧、Q9,Q10のドレイン電圧、Q5,Q6のゲート電圧です。

Q9q10gate

Q9q10drain

Q5q6gate

真ん中のQ9,Q10のドレイン波形は理想よりかなり離れておりますが、Q5,Q6のゲート波形はなんとか使える状態です。この状態でファイナル段に電源電圧5Vを加えると、最大で10Wしか得られませんでした。  また、この時のQ9,Q10のドレイン電圧は30%以上のレベル差がありました。 原因を調査したところ、Q9,10のIRFI510をフルスイングするのに必要なゲート電圧は8V以上必要で、5Vのゲート電圧ではノミナル1Aくらいしか流せない事でした。 FETのバラツキによっては1A以下しか流せないものもあります。 要するに5Vの電源で動作する74HCU04ではドライブ不足という事です。 5Vの3端子レギュレーターのGNDにゲタをはかして6Vにする実験もしましたが、少しだけ良くなる程度で、正、逆の電圧差は解消しませんでした。

バラック状態で、あっちがショートしたり、こっちが外れたりとトラブルが相次ぎ、またまたドライバー段のIC3 CLOCK入力が壊れてしまいました。 この修理の途中で5Vの3端子レギュレーターが壊れた事に気付かず、12Vの電圧がスルーして、74HCU04を2個、74LVX74を4個も壊してしまいました。 ICはまだ手持ちしていますが、これ以上の検討を諦め、正規のFETドライバーを探す事にします。

RSでFETドライバーを検索すると、極端に安いドライバーが見つかりました。 1個90円ですが、1.5Aのドライブ能力があり、スピードもTC4422並みです。TC4426という品番で8PIN DIPの中に2回路入っています。 ただし、このICは反転出力です。 非反転出力のICはTC4427という品番ですが197円もします。 反転出力のICは人気がないのかも知れません。 私が使う場合、反転も非反転も関係ないので、安いTC4426に決定しました。

Tc4426back

Tc4426front

左上がTC4426を使った基板裏側、右上が部品挿入面で、8pinのDIPがTC4426です。 このFETドライバーを使う事により、従来あった74HCU04の回路がなくなりましたので、回路的にはかなりすっきりしました。 TC4426は9Vの3端子レギュレーターから電源供給させます。また、14MHzを1/2分周するICは74HC74に変更し、このICが持っている反転出力を使い、直接TC4426を互いに逆相でドライブします。 TC4426の入力部には+5Vに電位を固定するクランプ回路を入れ、14MHzが供給されない時は、FETのゲート電圧が両方とも0電位になるようにしています。 下にその回路図を示します。

回路図 7M_amp_3para_TC4426driver.pdfをダウンロード

Q9gate

Q9drainQ7gate

上の波形は左から、Q9,Q10のゲート、真ん中はQ9,Q10のドレイン、右はQ5,Q6のドレインすなわち、終段のゲートドライブ波形です。 この終段のゲート波形は10Vppを超えていますので、ドライブ能力は十分と考えられます。 まだ終段には電源がつながれていません。 真ん中のQ9,Q10のドレイン波形はプッシュプルのアンバランスも解消し、画期的に改善しました。 そして、なんとなく判った事は、ドレインの電圧波形のピークがつぶれて凹む現象はドライブ不足が原因であると言う事でした。

現在は、FETの破壊を恐れて、恐る恐るチェックしていますので、全体像はまだ見えていませんが、なんとか使える状態になったと思われます。 

机の上にオープン状態に置き測定した出力は

5V時 16W

6.9V時 26.4W(13.8V時 105.6W)

13.8Vとそれ以上の電源電圧時の出力は、シャーシに組み込み、ファンが動くようになってから確認する事にします。

なお、この状態でQ9,Q10の電流は1.2Aくらいになりましたので、約14.4WのDC入力です。 効率80%とすると、約11.5Wくらいの出力になっている模様です。

7MHz D級アンプ QRO計画4(組み込み) へ続く。

INDEXに戻る

2017年4月29日 (土)

7MHz D級アンプ QRO計画 2

<カテゴリ AM送信機(PWM方式)

サンケンのFKI10531というN-MOS FETによる2パラプッシュプル回路は、6.9Vの電源で22Wの出力を得る事ができましたが、この時点でMax Vdsは40Vありました。 これは13.8Vの電源で80Vになる事からFETの最大Vds=100Vの規格に対してほとんど余裕が有りません。実験中にFETを壊すのは確実ですから、実験前に諦めてしまいました。

RSで適当なFETがないか探すと、以前チェックした事があるSTマイクロのSTF17NF25というFETが86円くらいでありました。これならVds max 250Vですので、かなり余裕が出来ます。 これを10個購入し、このFETで再度6.9V 25W出力に挑戦します。 ただし、このFETのRdsは165mΩくらいありますので、4個パラくらいにしないと、FKI10531と同等のRdsにはなりませんが、とりあえずは、3個パラプッシュプル(合計6石使い)でトライします。

回路図 POWER_amp_3para.pdfをダウンロード

比例計算では6.9Vの電源で21.4Wくらいになりますが、その他のロスの軽減策でチャラに出来るくらいのロスです。

3para_pp_jw_2

上の図面は、リンギング対策の為、FETのレイアウトを変更した、3パラプッシュプルのD級アンプ回路です。放熱板のサイズは前回と同じですが、向きを90度変えてあります。

この新アンプより、両面ガラエポの基板が使えるようになりましたので、基板は生基板をそのまま使います。加工するのは、ゲート入力回路のみで、ダイソ-で買った300円のミニドリルの刃先をグラインダーに付け替え、銅箔を削ってパターンを作り、チップ部品を装着できるようにします。 それ以外の配線はすべて短冊状の銅板で行います。

Pwr3parapp

上が図面通り、放熱板や基板を加工して配線完了したアンプユニットです。放熱板のサイズは前回と同じです。

Gatepwb_3parapp

 上は、6個のFETとそのゲート入力回路の基板です。各FETのゲートに1608の1Ω抵抗をシリーズに入れた手作り基板です。 リンギング対策の基本は構造が簡単であるという事ですが、この構造なら、4パラでも6パラでもすぐにできます。

Pwr3parappvds3_2

Pwr3parappvds3max_2

 左上は、電源電圧を3Vにして最大出力ポイントより30%くらいパワーを絞った時のVds波形です。 右上は同じ電源電圧にて、最大出力時のVds波形です。 ドレインGND間にバリコンをいれリンギング最小状態にしてあります。  まず、プッシュプルの両側で波形が異なります。また、この時の最大波高値は前回の半分くらいになっています。 どうも動作モードが変わってしまっているようです。 

原因を調べたところ、最大波高値が下がったのはFET3パラによる出力容量の増大が影響しているみたいです。 また、プッシュプルの両側で波形が非対称となっているのは、ドライブ入力部のFETを含むアースポイントが最適になっていないようです。 また、入力トランスの入力部分(TS930Sの出力端)の波形がきれいなサイン波からかなり崩れています。 これらは、今後ドライブ回路の設計のなかで、詳細を検討する事にします。

しかし、ダミーアンテナの両端波形はLPFなしですが、一応まともな波形をしています。

肝心な出力ですが以下のようになりました。

3parappout 一応当初の目標6.9Vで25W、13.8Vで100Wの出力を確保できました。 Rds=165mΩは最大値ですので、実力は結構低いのではないかと思われます。

この時のTS-930Sからの出力は7Wでした。 効率は3Vの電源の時70%くらいでしたから、100W出力時は70%以上あると思われます。 また、入力を7W以上にするとリンギングが多くなりますが、出力は変わりません。 逆にに7W以下にすると次第に出力は低下しますが、リンギングも改善され、最大出力の30%減くらいできれいな写真のような波形となります。

このアンプを2台シリーズに繋ぎ、電力合成すれば、13.8Vの電源で50WのAM送信機が出来ることが判りましたが、この13.8V 50WのAM送信機の使い道が有りません。今の所、AMで移動運用をするつもりは有りませんので、このパワーアンプはここで終わりにします。

Pwr3parapptest

上は、この新RFアンプの実験風景です。

これから、入力ドライバー回路の検討を行い、現行の50W AM送信機をQROする方向に目標を変更します。

7MHz D級アンプ QRO計画 3 に続く。

INDEXに戻る

2017年4月19日 (水)

7MHz D級アンプ QRO計画 1

<カテゴリ AM送信機(PWM方式)

キャリア出力50W(ピーク出力200W)のAM送信機は完成し、時々ON AIRしていますが、この送信機を製作始めたころの最初の目標「12V電源で50Wの送信機」はいまだに実現しておりません。 SSBトランシーバーでは13.8Vの電源で100Wの送信機は当たり前ですから、市販のトランシーバーは13.8Vの電源で25W出力のAM送信が普通に可能です。 そこで、当初の目標であった13.8Vの電源で50WのAM送信機(ピーク200W)に再挑戦する事にしました。

今回検討するパワーアンプの回路図です。POWERAMO_0.pdfをダウンロード

終段はサンケンのFKI10531パラレルプッシュプルでこの回路でまず25Wを狙います。 首尾よく目標達成できたら、同じものをもう1台作り、電力合成して50Wが実現できるだろうというもくろみです。

終段をドライブするには終段の入力容量は3000PFを超えますから、従来のTC4452などでは無理で、昔のトラ技に紹介されたFETをクロスして配置したオーソドックスな回路にもどしております。この回路では、ドライブパワーとして3Wくらいが必要になりますので、実際はこの前段に5WクラスのC級アンプをおきますが、実験の初期はTS-930Sから50Ωの出力インピーダンスで5Wくらいでドライブします。

まずは、入出力に使うメガネコアの吟味です。

Core_z

左のグラフは手持ちのフェライトコアに1ターンのコイルを通した時の周波数対インピーダンスを表示したものです。 デジタルでインピーダンスを表示できる手作りアンテナアナライザで実測しました。 この中で、TS930Sの入力トランスの実測カーブが濃い青色で示され、特性は10MHzをピークに14MHzでは下がっています。 一応この特性を目標に、コアを調査した結果、INPUTと表示してある、昔1個30円で買ったコモンモードチョーク用の分割コア(CMF)2個分が一番良い特性を示しました。 次に出力用としては、北川工業の分割コアGTFC4個分(OUTPUTの表示)でそこそこいけそうですので、これらを使い、メガネコアを手作りする事にしました。

Meganecores0_3

Meganecores1_2

左上の写真は、CMFコアを2個ビニールテープで縛り、その状態での寸法を基に、コアを貫通する銅パイプと側面でこれを受け止めるリングの図面をJW-CADで作図し、これを実寸大にプリントアウトした紙を厚さ0.3mmの銅板に貼り付け、ハサミで切り出した銅板です。 銅板をリング状に切り取る為に、まず「タケノコ」と呼ばれるドリルでリングの中心部分に穴を明けた後、外周をハサミで切り取って作ります。

右上の写真は出来た銅板をフェライトコアの中に埋め込みワンターンコイル付メガネコア状にしたものです。 この状態で裏、表ともハンダで結合すればメガネコアによる入力トランスが完成します。

Meganecorels1

同じようにして、出力側のメガネコアも作成します。

左側の大きなメガネコアはGTFC 28-16-13という分割コアを4個使い、ビニールテープで縛りまくった状態で銅板によるパイプとリングを作り出来上がったもので、外形は58x43x28mmでパイプの内径は12.5mmあります。

メガネコアのサイズが固まりましたら、これを基板上に配置し、FETを放熱板に固定する構造を考えながらパワーアンプ全体のレイアウトを決めます。 プリント基板は片面ガラエポをカッターで削りながら作る条件で、立体配置図をJW-CADで作成します。

この作業はプリント基板のように平面で回路を構成する電気屋の作業ではなく3D構造で回路を構成する為、機構屋の作業になってしまいます。

Jw_pweramp 上の図面はこの3D構造のパワーアンプ部分をJW-CADの2D図面で描いたもので、FETの配置を青色で、基板のパターン構造を赤色で示してあります。

この後、放熱板や、基板を図面通り加工すると、下の写真のようなパワーアンプが完成します。 ただし、ガラエポの基板はまだ未入手ですので、紙エポの銅箔なし基板に厚さ50ミクロンの銅箔テープを両面テープで張り付け基板の代用としています。

Pwrampassy1

このパワーアンプの入力トランスに2ターンの1次コイルを巻いてアンテナアナライザで入力側のSWRを測ったところ、SWR=6くらいでした。この状態でTS-930Sから出力を加え、電源電圧3Vの状態で出力が飽和するレベルは12Wくらいでした。 そこで、1次の巻き数を3ターンして、再度トライするとTS-930Sの出力が6Wくらいから、D級アンプの出力は飽和します。 次に4ターンの1次コイルを巻き動作テストを行いました。 TS-930Sの出力が3WくらいになるとD級アンプの出力は飽和します。このときの入力側のSWRは1.8くらいでした。 以後、この状態でのテストです。

Vd_3v

出力側のメガネコア(出力トランス)の2次巻き数は2ターンです。

Vds=5V 出力6.8W

となりました。これは従来の50Wアンプと同じ出力インピーダンスの場合に相当し

Vds=15V 時 出力は61Wに相当します。

上の波形は、Vds=3V時のドレイン電圧波形です。 従来の50Wアンプよりリンギングが多くなっており、最大出力にすると、ゼロレベルの部分にもう二山波形が現れるほど、乱れます。 最大出力付近でのリンギングを最少にする為、ドレインとGND間にバリコンを挿入し、リンギング最少になるようバリコンを調整しています。 ただし、今回の回路では、ドレインとGND間にコンデンサを入れてもドレインピーク電圧は下がりませんでした。

次に出力トランスの2次コイルを3ターンとし、バリコンでリンギング最少とした状態で

Vds=3V     4.2W

Vds=4V     7.1W

Vds =4.9V  10.4W (この時の電流は2.972A)

Vds=6.9V(13.8Vの1/2)のとき、22W

この状態で終段FETのドレイン電圧はmax40Vまで上がっていました。 またこの時のリンギング波高値は10Vくらい有りました。

という事は、13.8Vを電源としたAM送信機の場合、ピークパワー時80Vのドレイン電圧となりますので、Vdmax=100VのFKI10531では25Wの目標はかなりきついとい事が判ってきました。

過去の経験から、このギリギリのスペックでは、実験中にFETが壊れる確率が100%近くになりますので、FETの再選定は避けられなくなりました。 

Patest0

上の画像は、この出力テストの実験風景です。

リンギング対策の為、GNDの引き回しを再検討する必要が生じ、一度分解し、レイアウトをやり直した上で、FETの選択をやり直す予定です。

7MHz D級アンプ QRO計画 2 へ続く。

INDEXに戻る

2016年6月25日 (土)

VXO再検討

<カテゴリ AM送信機(PWM方式)

PLL VFOを試作し、キャリア近傍の不要輻射の為、採用を断念した代わりに、可変の拡大が可能なVXOについて、再検討する事にしました。 PLL VFOの時取ったVXOの不要輻射が以外と良い事に気付いた事によります。

現在のVXOは、いわゆる「スーパーVXO」と言われる、水晶発振子を2個パラに接続した回路で、11kHzの可変範囲を確保していましたが、AMのもうひとつの常用周波数である7181KHzはカバー出来ていませんでした。

まず、60PFのトリーマーをSVC203CというONセミコンのバリキャップに変更してみました。バリキャップの最大DC電圧を8Vとした時の可変範囲は7197KHzから7186KHzとなり可変範囲は変わりませんが、全体が1KHzほど低い方へシフトしました。 この状態で単純に水晶発振子を2個から3個に増やしてみました。 すると、最低周波数が7165KHzくらいまで拡大しましたが、最高周波数は7194KHzくらいとなります。 メインの7195KHzをカバーできないので、この方法は採用できません。

Vxoschema

FCZ研究所の機関紙でコンデンサを追加して、可変範囲を拡大するアイデアを紹介していましたので、水晶2個の状態で、水晶とコイルの接続点からGNDへ4.7PFを追加して見ました。 すると、周波数可変範囲は200KHzを超えて7000KHz以下まで発振し、かつ最高周波数は7195.2KHzとなりました。 しかし、7100KHz以下の周波数では、かなり不安定で、CWモードでのビート音もなにか不安な音です。

そこで、このコンデンサを2.7PFにした上で(赤枠で囲んだC7)、バリキャップ電圧を上げる為に9Vの専用3端子レギュレーターを追加しました。 その結果、

最高周波数:7195.5KHz  最低周波数:7159.4KHz

となり、ビート音も澄みきっています。 目標とした7195と7181はカバーできましたので、どうやら使えそうです。

使用した水晶発振子はaitendoで扱っている uxcellのHC-49Sタイプ 7.2MHz

47uHのコイルはRSで扱っているTDKのNL453232T-470J-PFというSMTタイプです。

発振回路に使われているトランジスタは、東芝の2SC2712Yですが、リードタイプの2SC1815Yと同等品です。

その後、このVXO回路を200W AM送信機にも使いましたが、気温の低下と継時変化により、最高周波数7195.0KHzが確保しにくくなってきました。 よって、クリスタルを2個から1個にして、C7を2.7Pから3.9Pに変更しています。 この変更後の状態で、周波数は7196.6KHzから7173.0KHzまでをカバーしています。

アナログ回路でベース抵抗を決定する方法を紹介しておきます。 これを知っていると、大抵のトランジスタやFETを好きなように使う事が出来ます。

Trc

左の回路に於いてR1を可変抵抗器にしておきます。 可変抵抗器は100KΩから1MΩくらいを用意しておき、回路の状況で使い分けます。判らない時は1Mか500KΩくらいでトライします。

コレクタにテスターを当てこの電圧が以下の式に合うようにR1の可変抵抗を調整します。

VC =VE + (VCC - VE) / 2

R1を可変するとVEも変わりますので、都度VCとVEを見ながら行います。 VCが目的の電圧になったら、R1を取り外し、テスターで抵抗値を計ります。 そしてE12シリーズの抵抗で最も近い値の固定抵抗に置き換えます。 R3が無い時はVEが常にゼロですから、VCはVCCの1/2にすれば良いのですが、温度安定度が極端に悪くなりますので、最低でも数10Ω以上の抵抗を挿入必要です。  この方法はRLが抵抗の場合の時のみしか使えませんが、オシロが無くても最適バイアスに調整出来ます。 もし、RLがコイルの場合、アナログ信号を入力から加え、コレクタ端子をオシロでモニターし、上下が均等にクリップするようにR1を決めます。 高周波回路では可変抵抗器をリード線経由で接続すると条件が異なってきますので、この時の誤差を最少にする為、ベースのすぐ近くに予想される抵抗の1/3くらいの固定抵抗を入れ、これにシリーズに可変抵抗器をつなぎます。 調整完了後、固定抵抗と可変抵抗の合計抵抗をテスターで測り、固定抵抗に置き換えます。

E12シリーズ抵抗:1 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 の数値をベースとする抵抗値。この数値で1Ωから10MΩくらいまで量産されている。

回路がエミフォロの場合、VCC=VCですからVEがVCCの1/2になるようにR1を選べばOKです。 回路によってはR2が無い時もありますが、やり方は同じです。 

回路例と同じトランジスタやhfeランクが手持ちしていないとき、または、RLやR3を変更したい時便利です。 VCの値は厳密にやる必要は無く、とりあえずVCCの1/2程度に設定した後、VEを測り、その分だけ若干補正する程度でOKです。 このようにして設定したバイアス状態は温度変化に対してかなり安定に動作します。

余談ですが、この回路の低周波(100KHzくらいまで)ゲインは簡略的にRL/R3で求まります。 ただし、R3が数十Ω以上でC3が無い場合です。 また、最大ゲインはhfeに関係なく30dB以下です。 

Vxo_front

周波数可変は10KΩの可変抵抗で行いますが、CWモードでSメーター最大ポイントに周波数を固定しようとすると、270度回転の可変抵抗器では、かなりクリチカルです。 そこで、この可変抵抗器を3回転(1080度)のヘリポットに変更しました。 これでかなりスムースに周波数設定が出来ます。 周波数カウンターを付ける予定でしたが、発振出力を引き回しますと、隣接周波数のノイズフロアーが増える現象が発生しますので、周波数カウンターは無しで、昔のVFOチューニングと同じように、受信中にVXOのみONして、相手局にゼロビートする周波数に合わせるか、CWモードでSメーター最大ポイントにチューニングします。

Vxo_osc

Vxo50m

Vxo10m

左上は改造したVXO回路、真ん中は7170KHz40W時のスプリアスデータです。一番右は、10MHzスパンの近傍不要輻射データです。 変調をかけてもきれいな音をしています。

全体の回路図 AMTX_PP3.pdfをダウンロード

2016年8月13日追記

Amtxwithcounter1

送信周波数を受信機を使って合わせるキャリブレーションは使いにくい為、強引に周波数カウンターを追加しました。 しかし、40W送信時に   プリアンプにE級アンプのスプリアスが混入し、カウンターが正常にカウントしません。 VXO回路と周波数カウンター回路を完全シールドしないと使い物にならないようです。 この送信機はオープン構造でシールドは無理ですので、送信時は周波数カウントを停止させ、キャリブレーション時の周波数を保持する事にしました。 受信時もVXOは停止していますので、この時もキャリブレーション時の周波数表示を保持させます。 これをやる事で、カウンターにはつきものの、最下位桁のチラツキも無くなりました。 PICは40W出力時でも誤動作無く動いています。

Amtxwithcounter0

Amtx_cntr

左のスペクトルは、周波数カウンター付で、送信状態にしたものです。 不要輻射はカウンターが無いときより若干増加しますが、一応スペック内ですので、良しとしました。 上はLCD基板と一体化したカウンター回路です。

使用した周波数カウンターの配線図 VXO_Counter.pdfをダウンロード

周波数カウンターのソースファイル TX_Fcounter.cをダウンロード

7MHz E級アンプ QRO計画 1 に続く。

INDEXに戻る

2016年6月11日 (土)

PLL  VFO(7MHz AM用) 失敗でした。

<カテゴリ AM送信機(PWM方式)

AM/FMラジオのPLLシンセサイザーICを使ったAM送信機用VFOの製作です。

目標は7000KHzから7200KHzまでを1KHzステップで可変できるPLL VFOとします。 使うICは廃番候補のTC9256Pです。 ネット上で7.2MHzのクリスタル付で売られています。

回路図 PLL_OSC_schema0.pdfをダウンロード

PICのクロックが7.2MHzの水晶になっているのは、最初PIC16F84で作り始めたところ、LCDドライブの部分だけでRAM容量オーバーになり、ピンコンパチのPIC16F1827に差し替えた事によります。OSC部分はそのまま使いました。

この回路は東芝の提供するデータシートを理解し、その通り、マイコンソフトを作れば、PLLロックという状態を得る事ができますが、そこに至るまでの工程を以下紹介します。

Pll_claposc

まず、VCOですが、クラップ発振回路の見本みたいな回路です。 手持ちのインダクターで発振コイルに使えそうなコイルは太陽誘電製のLBM2016T120Jしかありませんでしたので、このコイルとONセミコンのバリキャップSVC389で7MHz付近を中心とした発振回路を机上計算して定数を決めます。 PLLのICの代わりに10KΩの可変抵抗でバリキャップ電圧を調整し、約4Vくらいで7.1MHz付近を発振するようにC16を決めてやります。 C0,C1,C2の直列合成容量とLで計算される共振周波数が7100KHzになるように各コンデンサを調整します。 最初、6.6MHzから7.8MHzくらいをカバーするCを求めてテストしましたが、バリキャップ電圧の振動が止まらず、4MHzから12MHzくらいまでのカバー範囲に設定し、実際は7000KHzから7200KHzしか使わない事にしました。 ただし、クラップ発振回路の出力はかなり歪んでいましたので、エミフォロで出力した後、LCのタンク回路で波形整形し、PLLのICに戻したり、トロイダルコイルによるトランスでインピーダンス変換した後、送信機へ出力するよう回路を構成しました。 トロイダルコイルはamidonのT37-2で1次側が10uHになるよう0.3mmのUEWを巻いてあります。

Pll_flow_2

このPLL ICのデータシートの中に、左のような周波数変更を実施してから、PLLロック完了までのフローチャートが示されており、その通りにプログラムを組めれば良いのですが、私の技量では、この入り組んだフローをC言語の関数のみでは、どうしても記述できなく、禁止事項となっている「goto」文で記述する破目になりました。

とりあえず、プログラムが完成し、いざ走らせると、PLLロック検出まではうまくいきますが、最後の位相誤差判定を抜ける事が出来ず、そこで永久ループに陥ってしまいます。 多分ハードの精度が悪くて、要求された一定の位相差を維持できない事が原因と思いますので、とりあえず、この位相誤差判定の行はコメントアウトしたところ、ロータリーエンコーダーを回す毎に周波数が1KHzステップで可変できるようになりました。 

その後、LPFの定数設定を吟味し、PE1-PE3が「0」のとき、ループから抜けられる様にフィルターを改善しました。 

ネット上でこのICを使った製作例は沢山みつかりますが、東芝が指定したこのフローをフォローしたソースコードは見つかりませんでした。 もしかしたら、プログラムカウンターだけ設定すれば、勝手にPLL LOCKになるのかも知れませんが、確認しておりません。

基本動作はOKになりましたが、プログラマブル分周器の分周比を7195に指定しても発振周波数は7196KHzとなります。この問題を調べていくと、7.2MHzの水晶発振周波数が7200KHzではなく7201KHzになっているのが原因でした。 この7.2MHzの水晶はネット通販で10個で150円という格安品ですが、スペックなど有りません。 

 Xtalosc
色々と情報を調べていくとアマゾンで似たような水晶が50個単位で売られており、その商品説明の中に負荷容量20PFと書かれていました。多分同じような値段なので、同一メーカーの同一品だろうと予想し、水晶発振子の両端に接続するコンデンサを計算してみました。 

メーカー発表の負荷容量をC0とすると、左の回路のCgとCdはどちらも同じ容量として

Cg = Cd =2 x (C0 - 5) [PF]

と簡易的に計算できますので、実装した後、周波数をトリミングする事にします。

計算結果は30PFと出ました。 一般的な負荷容量は12PFとか9PFですので、15PFくらいを想定したのがいけなかったようです。 コンデンサを33Pと15PF+20Pトリーマーで7200KHzちょうどを発振するようになり、分周比と発振周波数は一致するようになりました。 この発振周波数の確認は受信機で行うのが一番確実です。

    PLL IC用クリスタルは正確に7200KHzでなければなりませんが、PICの発振は水晶である必要も7.2MHzである必要もありません。 今回は7.2MHzの水晶が有り余っていたので、使用しただけです。 水晶の両端に付けられたコンデサも最初に見つかった27Pにしただけで他意はありません。

PLL-VCO式の発振器の留意点はピュアな信号が得られるかです。 位相ジッタが原理的に付きまといますので、フィルターや電源、GNDをセオリー通りにやらないと、濁った信号になってしまうと言われております。

Pllsin

Pll10m_2

Pll50k_2

左上が7195KHzのVFO出力波形です。画像はありませんが、第2高調波が-30dBくらいになっています。 これはLPFやBPFで簡単に減衰できます。 真ん中が10MHzスパンで見たスペクトル、右側は50KHzスパンで見たスペクトルです。使用しているスペアナの限界の為、これ以上細かくみられませんが、異常な隣接不要輻射は見えません。 実際にCWモードで受信してみても、濁りのない綺麗なトーンをしています。

今回採用したロータリーエンコーダーはアルプス製の1回転パルス数24のものです。シャフトがFカットでつまみに自由度が無く、パネルにナット止めできないという欠点はありますが、温度による摺動ノイズの問題が全くなく、かつ百数十円で買えるというメリットがあるものです。

このVFOは送信のとき使用しますが、受信の時は使用しません。 受信時はVFOの電源をOFFする事も考えましたが、電源ON時にLCDの待ち時間が影響して、すぐにPLLがロックしません。 そこで、常時VFOは生きていて、受信の時のみ発振周波数を50KHzアップして、受信時の妨害にならないようにする事にしました。 この機能は実際に送信機へ組み込んだとき、検討する事にします。

電源ONした時のデフォルト周波数は7195KHz固定です。 ラスト周波数をEEPROMに記録する事も考えましたが、 AM送信機のメイン周波数固定で問題なさそうです。

ソースコード PLL_VFO.cをダウンロード

Pllvfo_a

Pllvfo_b

左が7195KHzを発振中のVFO基板。上がその基板の裏側です。  LCDの左上に見えているゼロはPE1-PE3の位相誤差データです。

送信機に実装する場合、RFの回り込みが多分発生すると思われますので、シールドケースに入れる事にします。

Pll_vfo_comp

Pll_vfo_sbox

左上がシールドケース内部の基板、右上はシールドBOXとした状態です。 このように厳重にRFのまわり込みを対策したにも関わらず、わずか10Wの出力にて、ロータリーエンコーダーを回しても周波数は変わらなく、VCOの発振周波数はあさっての方に飛んで行っているという状態で全く使い物になりません。 周波数が変わらないのはマイコンの外部割込み端子にRFが混入して、マイコンが暴走している為。 周波数があさっての方向に行ってしまうのは、終段のRFの漏れがPLL入力端子に混入し、位相が狂ってしまっている為。 これらの問題を丸一日かかり対策し、40W出力でもVFOが安定して発振するようになりました。

これらの対策済み回路図です。 PLL_OSC_schema1.pdfをダウンロード

この状態で出力10W時の不要輻射をチェックしてみました。

 

Xtal_10w

Pllvfo_10w

左上が水晶発振(VXO)の不要輻射データ、右上がPLL VFOの不要輻射データです。PLL VFOの方はキャリアを中心に隣接周波数の不要輻射が10dB程多くなっています。 この原因を調べていましたら、送信周波数とVFOの発振周波数が同じなら、例え、厳重にシールドしたとしても、送信波の回り込みは阻止できず、このような状態になる事が判りました。 市販されているトランシーバーのVFO周波数を調べたところ、送信周波数とPLL VFO周波数は重ならないように設定し、なおかつ、厳重シールドしてありました。 

下のスペクトルは40W出力時の10MHzスパンのもので、左がVXO 右がPLLです。 やはり、このPLLの状態で送信はダメでしょう。

Vxo_40w10m

Pll_40w10m

今回のVFOはAM送信機に組み込むのが目的でしたので、PLL VFOは無理と諦める事にしました。 送信周波数と原発信周波数を同じに出来るのはDDSの場合のみのようです。 もちろん、DDS制御のPLLもNGでしょう。 

SSBトランシーバーのように送信周波数と無関係な周波数、例えば9MHz台で発振させ、16MHzの水晶発振周波数とMIXし、7MHzを得るとかすればOKと思われますが、それも面倒です。

7195KHz以外の周波数を使える手段として、別のアイデアを練る事にします。

VXO再検討 に続く

7MHz用では失敗しましたが、50MHz用として再検討したPLL VFOは成功でした。

INDEXに戻る

2016年5月26日 (木)

AM50W カーボニルコアの効果

<カテゴリ AM送信機(PWM方式)

T200-26のコアはまだですが、T150-26というAmidonかMicrometalか、はたまた中国製のセカンドソースか判りませんが、それらしきコアが入手できましたので、最大重畳可能なDC電流を気にしながら、LPFの再計算を行い交換する事にしました。

Amtx_mod_lpf_carbonilcore

再計算された4次LPFの各定数は上のようになりましたので、コイルもコンデンサも、この数値に最も近くなるように設定し、巻き上げたコイルが左下、このLPFでの変調波形が右下になります。

 

Amtx_carbonilcore

Amtx_t15026_90mod

左側のコイルはACコードを裂いて作ったビニール線で、右側のコイルはLANケーブルを裂いて取り出したAWG24の2本より線で巻いてあります。 変調周波数は630Hzですが、はっきりと従来のフェライトコアより歪が少なくなっています。

Mic_ftoku_2

さっそく、音楽を変調し、TS-850のAMモードで受信してみました。 すると、確かに歪は大幅に減少していますが、周波数特性の高域に伸びが有りません。 そこで、MICアンプから変調段までの周波数特性をチェックしてみました。

左のグラフがMIC入力から変調終段FETゲートまでの特性を青色で、250KHzのLPFの出力端までの特性を赤色で示しています。 グラフを見る限り、フェライトコアの時の特性と差異はありません。 しかし、聴感上は大きく異なります。 

原因はコアの鳴きの有無でした。 今回のコイルは変調音がコイルからほとんど聞こえません。 従来のフェライトコアはツィータースピーカーを思わせる高域のみがコイルから発せられており、かつこの高域の音はかなり歪んでいました。

TS-850もこの送信機も同じテーブルの上に置いてありますので、TS-850のスピーカーがウーハーとなり、フェライトコアがツィーターとして2-WAYのスピーカーシステムを作ってしまい、歪んだ音ですが、広帯域の音として聞こえていたものでした。 このカーボニルコアの方が、正常な音質のはずなのですが、いまひとつ物足りなさを感じます。 しかし、さらにエージングを続けたり、レッキとしたオーディオシステムで聞き比べてみた結果、今までの音質が異常であり、このカーボニルコアによる音質が正常である事が判りました。

LPFのコアを音鳴りさせない為には、巻線がコアに密着する事が一番のようです。 その為には、単線より、ビニール被覆のより線で、かつ出来るだけ細い線が有効のようです。 ただし、あまり細いと抵抗分が増大しますので、複数本パラに巻くというのはかなり効果ありました。 最初のNECトーキン製コアに巻いたときもKIV線というビニール被覆でしたが、このコアはフェライトコアを樹脂のケースでカバーしたものでしたので、コアと線が密着するという条件は満たされなかった為、音鳴りしたと思われます。

このコア変更に当たり、フェライトとカーボニルの差が出るものかを確かめる為にデータを取っていますので、以下紹介します。

 

Amtx_2ndharmo

Amtx_carbonil0601

上は、40W出力無変調時の高調波データです。左がフェライト、右がカーボニルです。 コアは変調段の特性には影響しますが、高調波には影響しません。 差があるとすれば9MHz付近の不要輻射レベルです。気持ち的にはフェライトの方が少ないように思えます。

 

Amtx_250k30mod

Amtx_1m0601_2

上は1KHz 30%変調状態で250KHzのPWMスイッチング周波数の漏れを見たものです。 左がフェライト、右がカーボニルです。 250KHzの漏れはどちらもあまり変わりません。不要輻射となるノイズフロアーレベルも同じくらいです。

 

Amtx_1k30mod

Amtx_100k0601_2

上は1KHz30%変調時のキャリア近傍の不要輻射データです。左がフェライトで右がカーボニルです。 このデータもフェライトとカーボニルの差はほとんどありません。 

Amtx_10m0601_2

これらのデータを取る前は、絶対にカーボニルの方が良くなるはずと思っていましたが、フェライトでもちゃんと磁気飽和対策さえ行えば問題ない事が判りました。

また、気にしていた9MHz付近の不要輻射も改めて確認したところ、左のスペクトルのごとくカーボニルコアでも問題はないようです。

従い、このAM送信機はカーボニルコアで進行します。理由は、変調波形のエンベロープは明らかにカーボニルコアの方が歪が少なく、聴感上の歪も、カーボニルコアのほうが少なかった為です。

エージングで壊れて、仮使用しているD1のショットキーダイオードは60V5Aのショットキー2本パラ接続に変更しました。 このダイオードはSMTタイプですので、基板の裏側に移り、写真では見えなくなりました。

ここまでの配線図 AMTX_PP2.pdfをダウンロード

Amtx0526

40Wでエージングを続けて、延べ20時間くらい過ぎたところで、ファイナルから煙が出て出力は10W以下に落ちてしまいました。 しかも、部品の焼ける匂い。 最初、どこで問題が起こったのか判らず焦りました。 1時間くらいああでも無い、こうでも無いとやったあげく、判った原因は終段タンク回路のシリーズコンデンサが絶縁破壊しているものでした。 例の昭和40年代に作られた50V耐圧のセラミックコンデンサです。 たちまち手持ちが有りませんので、2個のコンデンサをシリーズに接続し、とりあえず耐圧を2倍にして使っています。

2016年12月11日 追記

電源として使っているTS930Sの電源回路にある30V以上をプロテクトするツェナーダイオードを廃止して、31.6Vまで電圧を上げる事ができましたので、ダミーロードをつないでいきなり送信にしたら、またまた、終段のタンク回路のコンデンサが煙を出してショートしてしまいました。 やむなく、この昭和のコンデンサは全部廃止し、3KV耐圧のコンデンサに変更したのですが、使ったコンデンサがF特と言われる温度特性管理があまい物だった為、数分も通電すると、容量が変わってしまい、出力が20Wくらいまで落ちてしまいます。 マイカコンは手持ちしていませんので、とりあえず、セラミックコンデンサを全廃して、150Pのエアバリコンに交換してみました。 さすがにエアバリコンは安定しており、エージングしてもほとんど変化はありません。

Amtx_tank

この150Pの送信用バリコンを取り付ける方法を思案しましたが、スペースが無く、やむなく50Pのバリコンに代え、不足の容量はCH特性のセラミックコンデンサでカバーさせる事にしました。 ここで、また昭和のコンデンサが登場です。 しかし、今度は220PのCHコンデンサを4個直列に接続し、50Pのバリコンで出力最大点が探せるようにタンクコイルのタップを選び直しました。 最大出力は60Wとなりますが、リンギングが発生します。 従い、バリコンを容量が増える方向に調整し、50W出力ポイントに固定しました。 ここまでの対策で送信開始直後から50Wとなり、以後出力は変化しなくなりました。

最新回路図 AMTX_PP3.pdfをダウンロード

VFOの製作に続く

13.8V電源による50Wアンプの検討はこちら

INDEXに戻る

2016年5月17日 (火)

シャーシ変更と音質改善

<カテゴリ AM送信機(PWM方式)

有り合わせのシャーシに組んだ回路ブロックは、その配置と距離の関係でRFの回り込みが発生し、それが、変調音の歪となっていました。 そこで、シャーシをもう一回り大きな物に変更し、将来ケース収納も視野にいれた構造とすべく改造する事にしました。

Amtx_pwr

FETドライバーTC4452を2個も使った事からDC12Vのシリーズレギュレーターの電力損失が10W近くになり、長時間のエージングで破壊したのをきっかけに、このレギュレーターをDC/DCコンバータータイプに変更する事にしました。採用したDC/DCコンバーターはサンケン製のMPM80という2Aタイプでしたが、キャリアーを送信した途端、アース線のビニール被覆が火を噴いてICはショート状態で壊れてしまいました。 RFイミュニテイに無防備のDC/DCは自ら壊れると同時に無線機を破壊します。 昔、菊水のAC/DC電源に2mのトランシーバーを繋ぎ、送信にした途端、出力電圧が制御不能になりトランシバーを壊した事を思い出しました。  しかし、またシリーズレギュレーターに戻す事は不可能ですから、今度は新電元の3Aタイプに変更し、入出力にチョークコイルを入れ、RF混入を防止する策をとり、なんとか40W出力でも正常に動作させる事に成功しましたので、 このDC/DCとパワーリレー、コモンモードフィルターなどを小さな基板にまとめてメンテしやすくしました。

RFのD級アンプはほぼ完成していましたが、メガネコアとドレイン間を結ぶワイヤーがリンギングの元になっている可能性がありましたので、これを短冊状の銅板に変更しました。

Amtxe_pp_amp

Amtxe_pp_vd

左上は、配線を銅板に変更した状態。右上はその状態で出力35W時のドレイン電圧波形です。それぞれ、60Vピークくらいです。 ゼロ電位のリンギングが前回より少しだけ改善しました。

Amtx_mod0516Amtx_micftoku0522 

また、変調回路もメンテを容易にする為、左上の写真のように放熱板を基板上に取り付け、D級アンプのFET 2石を基板上に配置しました。 今回、この変調回路にちょっとしたEQ機能を追加しました。 リミッターアンプの2番ピンに270Ωと1μFのパラ回路を追加し、2KHz付近でピークが出来るような周波数特性とし、少しでも了解度のアップを期待する事にします。 右上は、MICアンプからD級アンプのLPFまでの周波数特性です。 低域をカットし、中域を強調しています。 ただし、そのレベル差はわずかです。

D級アンプのLPFについても検討を加えました。 LPFの設計は、RFのD級アンプの動作インピーダンスに合わせる必要があります。 35W出力時の動作インピーダンスは4Ωくらいです。 従い、4ΩでLPFを再計算し、各定数を決め、LPFのコアはNECトーキンのESD-R-47N-Hという品番で200MHzくらいまで使える物に変更してありましたが、このコアはNi-Zn系の非分割タイプでした。

Amtxlpf0501

Amtxnogaplpf

従い、左上の写真のごとく、巻き数も少なく太い線で巻線出来ていましたが、右上の写真のごとく、変調波形に歪が見られました。 正弦波のエンベロープを良く観察すると、レベルが高くなる方向で振幅が抑えられた上下に非対称となっています。 この原因を調査したところ、直流電流重畳によるインダクタンスの変化のようです。 FAT5ではアミドンのT200-26のコアを指定していますが、このコアはフェライトではなく、カーボニル鉄粉による焼結コアです。アミドンのHOMEページから確定した許容DC電流は読み取れませんが、同じようなコアを使っている北川工業のメタルコアMPTRは20AのDC重畳でもインダクタンスは変わらないと言っています。 アミドンが例え20Aまでないにしても、5Aや10Aではインダクタンスに変化は無いと推定できます。 メタルコアの個人による入手は全く不可能ですから、コアをT200-26に変更したいのですが、入手にかなり時間がかかりそうです。 そこで、テンポラリィとして、北川工業の分割コアGTFC-41-27-16にもどし、1mmのエアギャップを2か所確保して、このDC重畳特性を改善したのが、左下のコイルで、このコイルのときの変調波形が右下になります。

Amtxlpf0517

Amtxw_gaplpf

フェライトコアにエアーギャップを設けて、磁気飽和対策をしても、直流電流増加によるインダクタンスの減少率がゼロになる訳では有りませんので、直流電流が、およそ2Aを超え始めると、インピーダンスが非線形になる事を防止する事は出来ないようです。 今後、カーボニルコアを入手できたら、どれくらい改善するか確認する事にします。

Amtx0522

今回シャーシを一回り大きくしましたので、全体の配置は左のようになりました。前回より大きく変わっていませんが、各ブロック間の距離を確保できましたので、RFの回り込みによりDC/DC電源の異常動作、変調音の歪は解消されました。 

また、変調段のLPFが鳴く問題をすこしでも改善する為、このコアを2枚のベーク板で挟みこみ、1mmのUEW線の振動を抑える事にしました。効果はベーク板がないよりはマシというレベルにしかなりませんでしたが、専有面積の削減にはなりました。 

 当初20W以下の出力でD級アンプの電流も2A以下でしたので、D1のショットキーバリアダイオードは3A定格品を使っていました。 出力40W近くになった現在は3Aを超える電流が流れています。 そして、エージング途中でこの3Aのダイオードもショート状態で壊れてしまいました。 とりあえず代用品を使っていますが、なるべく早く大きな定格のダイオードに変更が必要です。 電源入力部分には5Aのヒューズを設けていますが、すでに2回もこのヒューズが飛ぶというアクシデントもありましたので、28Vラインの電流も監視できるように電流計を追加しました。  

変調段を含めた効率は71%でまずまずです。 変調器のD級アンプは95%くらいの効率で動作しているようです。

エージングを続けていると、小出しに問題が出てきます。 日曜日の朝一番にエージングの為、送信にしたら、出力が10Wも出ません。 スタンバイスイッチを何回かON/OFFしているうちに35W出るようになりました。 一度35W出始めると、継続してOKとなります。 この不安定な動作の原因を調べてみると、TC4452の入力レベルがアンバランスで、一方は正常なレベルですが、もう一方は、スレッシホールドレベルギリギリで、温度が低い時は、レベルが下がりプッシュプル動作となっていないのが原因でした。 どうも前段のCMOSインバーターに問題があるようで、オシロでチェックすると、74HC04の出力が電源電圧の半分くらいしかスイングしていません。 ドライブ電流不足かと、インバーターをパラレル接続してみましたが関係なし。 改めてスペックを見ても、7MHzでスイッチングするには問題ないレベルです。  このICは取り付けた直後は実力でOKでしたが、いじっている間になんらかの原因で壊れたみたいです。 残念ながら、このICの在庫がなくなりましたので、手持ちのTIの74LS04に変更する事にしました。

Mm74hc04recomend

Mm74hc04 

ドライバー段で、 このドライブ不足が起こると、基本波近傍の不要輻射が極端に大きくなるようです。 ドライブ不足の状態で音楽を変調しながら、受信周波数を次第に離調させると、20KHzくらい離れた周波数では、歪んだノイズに近い復調音になりますが、受信機のSメーターは同調時に比べ40dBくらい低く指示します。 しかし、74LS04に替えた後は、同じように歪んだ復調音ですがSメーターは同調時よりも60dBくらい低く指示します。 ドライブ不足は不要輻射の増減に大きく関係するようです。

74LS04に変えてから、VR5を調整すると第2高調波レベルが最低になるポイントが出てくるようになりました。 さらに、送信開始すると、従来の調整状態のままで、いきなり出力40Wになります。 以前、エージング中に5Wほど出力がアップすると言いましたが、その原因は温度でコンデンサの容量が変わるのではなく、CMOSインバーターの状態が変化していた事が原因でした。 

ここまでの配線図をダウンロード AMTX_PP1.pdfをダウンロード

カーボニルコアの効果 に続く。

 INDEXに戻る

2016年5月 1日 (日)

パワーアップ40W(D級プッシュプルパワーアンプ)

<カテゴリ AM送信機(PWM方式)

E級アンプの出力は電源電圧によって決まり、パラレルドライブにしようが、プッシュプルドライブにしようが出力は変わらないという事ですが、E級プッシュプル回路の記事はインターネット上に沢山存在します。 私も、最初、パワーが大きくならないプッシュプル回路なんか必要ないと思っていましたが、いざシングルドライブのE級アンプを実際に作ってみると、その第2高調波の多さには閉口しました。 しかし、みなさんがプッシュプルを単に偶数次の高調波対策の為だけの目的で採用しているのではなく、パラレルドライブ同様、負荷インピーダンスを下げてパワーアップも同時に行っていると考え、実験を始める事にしました。

ところが、教科書通りの回路を組んでも、さっぱり効率が得られません。 そこで、E級を止め、D級プッシュプル回路にして検討を開始しました。

シングルドライブの時の第2高調波レベルは-6dBくらいで、7次LPFを使っても-35dB前後にしか減衰できません。 従い、さらに6次のBPFを挿入して、かろうじて第2高調波を-50dB以下にするという状態でした。 これをプッシュプルドライブにすると、LPFなしで第2高調波を-30dB前後に抑制できますので、7次LPFのみで、第2高調波を-50dB以下に抑制できます。 そして、電力効率も向上します。

シングルドライブでドライブインピーダンスを6Ω以下にすると、例えD級アンプでも効率は60%以下になってしまいますが、プッシュプルにして、これが70%以上になるなら、低い電源電圧でも出力を上げられる可能性が有ります。 電源電圧28.2Vで最大出力18WのE級アンプをD級プッシュプルにして、30Wくらいの出力を確保できないか実験する事にしました。

今回のパワーアップ計画は、D級アンプだから80%以上の効率を確保するという目標ではなく、最大許容損失をアップする手立てを行い、例え効率が70%以下になろうが、実運用状態で連続動作可能な最大出力を得る事を目標としました。

まず、回路図です。

AMTX_PP0.pdfをダウンロード (この配線図は初期のもので、最新では有りません。)

D級プッシュプル回路は3.8MHz用のFAT5回路を参考にし、STF19NF20によるシングルプッシュプルドライブで、それぞれ、TC4452というFETドライバーでドライブします。 

Ampp_eamp1

Ampp_eamp2

.

Ampp_pcb

STF19NF20の入力容量はIRF640より30%以上小さいですが、それでもドライブ電流がふたつのICで400mAも必要となります。 その為、28Vから12Vを作るレギュレーターはアルミシャーシに直止めしてありますが、かなり熱くなります。 

今回のD級プッシュプル回路の基板は片面のユニバーサル基板の銅箔面にベタ状態に銅箔シートを張り付け、これをカッターでカットして回路パターンを作成しました。使用する部品は終段のドレイン、ソース間に入るコンデンサ以外、すべてチップ部品で作りましたので、パターン構造は、はるかに簡単です。 各端子間を板状の銅箔で接続し、難しい所は、部品挿入面に短冊状の銅板を配置しました。 これらの構造が功をはくし、今回はリンギング対策が一発で完了しました。

プッシュプルの出力はメガネコアに1ターンの1次巻線の銅パイプの中を2ターンの2次コイルを通し、2次側で共振回路を構成し、その出力が50Ωのインピーダンスになるようにしています。 変調回路からの14VのVdは1次コイルのセンターより供給します。 この回路で最大効率を得る為のアンプの負荷インピーダンスは6Ωくらいになります。 本来のインピーダンスマッチング負荷は3.1Ωくらいなのですが、そのインピーダンスでは、電流増大による損失が増え、ミスマッチの6Ωくらいが最大効率となっているものです。

Vdmaxpower

終段FETのドレインアース間に入っているC4とC67のコンデンサにより最大ピークドレイン電圧を下げる事ができます。このコンデンサが無い場合のピークドレイン電圧は電源電圧14Vのとき、100Vくらいですが、330PFで約60Vまで下げる事ができ、出力はほとんど変わりませんが効率が数%良くなります。 左の波形はドレイン電圧の波形ですが、ふたつのドレイン電圧が180度の位相差で発生しています。 コンデンサ無しの時はこの波形の幅が狭くなって高さが高くなります。 ちなみにこの容量をさらに大きくしていくと、次第に波形が崩れてきますので、一応、教科書通りの波形に近い状態で止めておきます。

2次側のコイルとコンデンサで7.2Mhzに共振させます。 コイルのインダクターを2uHくらいから10uHくらいまで変更してみましたが、劇的には効率は変わりませんでした。 色々検討して、50Ωの負荷に対してQ=5.5くらいになる6uHくらいのコイルにし、それに共振するコンデンサをシリーズにいれます。 調整は仮接続した430PFのエアーバリコンを最大容量から次第に小さくしていきますが、Vdの波形の内、0V付近のリンギングが最少になるような出力にします。 この調整ポイントを超えてさらにバリコンの容量を少なくすると出力最大点がえられますが、このときのVdの波形はかなりリンギングが乗ります。 従い、この最大出力の60~80%くらいの出力状態が最適な調整ポイントになるようです。

この回路では、最大出力は49Wとなりましたので、調整ポイントは30Wと置きました。 この時のLPFを含めたアンプ効率は73%くらいになっております。 

Ampp_eampvc

仮接続のバリコンを取り去り、固定コンデンサに置き換えると、バリコンのもつ浮遊容量の影響で、同じ容量の固定コンデンサでは、うまくいきません。 そこで、数10ピコのコンデンサを何個がパラ接続し、そこそこの出力が得られるようにし、さらに20PFのバリコンを恒久的に接続し、完成した時点で微調する事にしました。 このバリコンはタイト製の送信用ですが、最初100V耐圧のトリーマーを付けていました。 出力を30Wにして、変調をかけた途端トリーマーが絶縁破壊し、煙を出してショートしてしまいました。かなり高電圧になるようですので、バリコンの耐圧には十分注意が必要です。 ところで使用している固定コンデンサは昭和40年代に生産された50V定格の円板タイプです。 従来より100Wのアンテナチューナーにも使用しており、このコンデンサが絶縁破壊した事は有りません。

変調段は現在のFKI10531 1石でも計算上はピーク160Wのドライブが可能なのですが、どうせFETも余っていますので、TC4422のFETドライバーはそのままで終段だけ2石のパラレルドライブとしました。 また、約6Ωの出力インピーダンスにマッチするLPFを再計算して、2次のフィルターとしました。

LPFは-3dB:8500Hz 250Khz:-60dBとして算出した L=159uH, C=4.4uFとしてあります。

Ampp_400hzmod

左は、30W出力で最大変調度の時の波形です。 変調回路のデューティを調整し波形のピーク部分はクリップしておりますが、最少レベルでキャリアがゼロにならないようにしてあります。 しかし、変調のエンベロープは決してきれいでは有りません。 ピークがとがったような波形をしています。 ピーク時に正帰還がかかっているような波形です。

今回、従来の配置のままでパワーアップしましたので、D級アンプからの回り込みが発生して、低周波で発振しました。 やむなく変調回路とRF回路の間にシールド板を建て静電結合を削減しました。 しかし、まだこの結合に伴う変調信号の歪が生じている感じです。 もう少し大きなシャーシに変調部とRF部を完全に分離できるような配置の再検討をする事にします。

 

Ampp_30wout

左のスペクトルは40W出力時の高調波レベルです。 前回使ったTS-930S用の7MHz BPFは有りません。 7次LPFのみで第2高調波は十分減衰しています。 逆に3次の高調波はシングルの時より増えていますが、OKレベルです。 実際に運用する場合、6次BPFを付けて使います。 また、変調波形の改善の為、RF回り込み対策や、LPFのコア変更など再検討する事にします。

一応、30W出力で1時間以上のエージングテストを行い、異常なしでしたので、続けて40W出力状態で1時間以上のエージングテストを実施しました。 今回、用意したPCのCPU用放熱板をファンで冷却していますが、ほんのりと暖かくなります。推定温度が45度くらいです。 この40W出力時のE級アンプ効率はLPF込で73%でした。 使用しているクラニシの終端型電力計はかなりあっちっちになっています。

さらに、数日間連続テストを行った結果、数時間のエージングで出力が5Wくらい上昇する事が判りました。 原因は温度上昇で、同調用コンデンサの容量が変化するもののようです。 シルバードマイカコンデンサを使えば問題ないのでしょうが、そこまでする必要もありませんので、常用出力を35Wにして運用するつもりです。 

後日、このエージングで出力が上昇する真の原因はコンデンサの容量変化ではなく、74HC04の性能が変化する事が原因と解りました。 使ったICの能力不足が原因だったみたいです。

全体の構造は前回の18W出力用とほとんど変わりません。

TSSに提出したブロック図を添付します。

3rd_TX_AM_PP_BlockDia.pdfをダウンロード

Ampp_all

35W出力のAM送信機が出来上がったように見えましたが、エージングを継続するにつれ、予想したオーディオの周波数特性が得られなかったり、レギュレーターが壊れたりと問題が続出しました。 変調音の歪はRFのフィードバックが最大の原因で、各ユニットの配置再検討は避けられなくなりました。

シャーシ変更と音質改善 に続く。

INDEXに戻る

2016年2月20日 (土)

リミッターアンプ追加

<カテゴリ AM送信機(PWM方式)

正弦波テストでは、大きな歪は確認できないのですが、音楽ソースで変調すると、曲によって歪が感じられる事が有りました。 その原因を調べていたところ、原因は変調器のLPFに使用されている2個目のフェライトコアによるコイルがRFのフライホイール回路の空芯コイルに近づきすぎ、この空芯コイルとフェライトコアコイルが互いに誘導しあっているものでした。 誘導の程度は正弦波も音楽信号でも同じなのですが、歪レベルが単純に正弦波上では良く見えなかっただけでした。

Eamp_2b_3対策として、この2個目のフェライトコアは廃止しました。 250KHzの減衰量を心配しましたが、左のスペアナ画像のごとく、33MHz付近にあったノイズも無くなって綺麗になりました。

E級アンプの放熱板はファンで冷却する事にし、8Vの電源ラインでモーターを駆動していましたが、変調用音量ボリュームを上げると、このモーターの駆動ノイズが同時に変調され雑音となっていました。 この対策の為、12Vラインから68Ωの抵抗と470uFのデカップリング回路を通して駆動するように変更しました。

最近のSSBトランシーバーは定格出力を1.5倍くらいオーバーしてもリニアリティが確保されており、内臓するコンプレッサーは単に出力が定格を超えないようにしているだけですが、AM送信機の場合、変調度が100%を超えたとたん、スプラッターをまき散らすという原理上の問題がありますので、このオーバー変調はどうしても避けねばなりません。

そこで、マイクに向かってしゃべっている時でも変調度を読み取れるように変調度計を追加しました。 

Mod_meter

Mod_amp

左が今回追加した変調度計、右は、SMT用ユニバーサル基板上に組んだメーター駆動回路で、後日、糸ノコで切り落とし、メーターの後ろ側に貼り付けます。

この変調度計はピークホールド型で、針の振れは遅いですが、オシロで波形観測をしながらチェックすると、指針が80%を超えなければ、おおむね100%以下の変調度が維持できるようです。 このメーターを見ながらしゃべる事にします。

さらに、突発的な過変調に対応する為、録音やカラオケのマイクアンプに使われるリミッターアンプを追加し、過変調の確率を減らす事にしました。 使うICはTA2011のセカンドソースであるSA2011です。ゲインは標準回路の47dBのままですが、アタックタイムを数ミリ秒にする為、6番ピンの抵抗コンデンサを変更しました。 うれしい事に、このICはトランシーバーのマイクアンプでの使用も想定されているようで、内部OP-AMPの差動入力間に20PFのコンデンサが接続されており、AMP-Iの問題は全く有りません。

この回路で、過入力があっても90%以上の変調がかからないようにVR2を調整しています。

また、前回の効率アップ検討時に実施したリンギング対策も下記の絵のように、すっきり配線することで、ほぼ確実に対策できました。 今回は短冊状の銅板を使いましたが、プリント基板の銅箔に幅を持たせて板状の導体で配線するのが一番の対策のような気がします。

E_ampringing

Amtx0303

左は最終状態の送信機で、変調度計を狭いフロントパネルに括り付けました。 そして、その後微調整をして、電源電圧28.2Vで18Wの出力が得られ、効率はE級アンプ部分で82%くらいになっています。

配線図 AMTX_15.pdfをダウンロード

ファンの振動をスタンドマイクが拾い、うるさいですから、シャーシの下にスポンジたわしを敷いています。

TSSに申請してから、約1か月後の3月中旬に、総通から設備追加の許可が降りました。 土日の休日しかON AIRできませんが、テスト運用しております。

さらにパワーアップにトライします。

パワーアップ(E級プッシュプルパワーアンプ) に続く。

INDEXに戻る

2016年2月11日 (木)

LPF改善

<カテゴリ AM送信機(PWM方式)

トロイダルコアで作った7次LPFはその挿入損失が大きく、E級アンプの効率アップの効果が全く生かされていませんでした。

そこで、最初に作った空芯コイルによるLPFを改造して、7次LPFを作り直す事にしました。

最初のLPFも空芯コイルでしたが、各コイル間のシールドがされていなく、これが、目標とした特性が得られなかった原因と考え、仕切り板のある構造にします。

New_lpf_schema

基本定数はトロイダルコアタイプと同じですが、空芯コイルに換え、各コイル間には仕切りを入れコイルどうしの干渉をなくし、かつ次のコイルへの接続は100Pの貫通コンデンサ経由で行うという方式にしました。 厚さ0.3mmの銅板でシールド枠を作り、はんだ付けして組み立てますが、強度確保の為、底辺にアルミの角アングルを当て補強してあります。

今回は手持ちの銅板で製作しましたが、原理的には、銅より鉄の方がシールド材としては優れていますので、次回製作が必要になりましたら、ブリキで製作するつもりです。

New_lpf_1_2

New_lpf

このLPFに50Ωの負荷をつなぎ、アンテナアナライザーで測定したSWRカーブが左の状態です。 7.199MHzのときSWR1.14となっており、この時の挿入損失が約0.45dBでした。 トロイダルコイルタイプの時は約1dBのロスでしたので、約0.55dBの改善です。

また、14MHzの減衰量をアンテナアナライザーとオシロスコープで確認したところ、30dB以上はあるようです。 

前回の検討で、FETシングルの時の最大DC入力は、23Wと出ていましたので、この新しいLPFの場合でもDC入力23Wくらいを目安として、コイルやコンデンサのカットアンドトライを行い、トランスの巻き数比も1:2にした結果、LPF outで15Wくらいの出力を確保する事が出来ました。 この時のE級アンプの推定効率は80%くらいになりました。

そして、効率の良いE級アンプと言えども、電源電圧を上げて、電流を押さえるようなハイインピーダンス回路にしないと、高効率は得られないという事が良く理解できました。 電源電圧はまだ上げる事はできますが、熱損失が目いっぱいですので、今回はこの辺で手を打つ事にします。

Am_tx0211

上の表は電源電圧を14Vにして、フライホイール回路の再設計を行ったときの出力データです。一番上は、効率最大の条件にしたもので、LPF outで約12Wの出力です。 熱損失的には、もう少し余裕がありますので、効率はダウンしますが、ギリギリまで出力アップしたのが真ん中のデータです。14V電源で16W出ています。 そして、この状態のままで、変調器をつなぎ、変調器に28.2Vを加えた時のデータが一番下です。かろうじて80%の効率を確保しました。

Vd0211

Mod0211

左上がVdの波形、右上は電源電圧28.2Vで1KHzの変調をかけた状態です。これより変調レベルを1dB上げると、1KHzの上下がクリップ始めます。従い最大変調度は90%くらいです。波形歪は音楽を変調して聞いてみても、ほとんど感じられません。

そして、配線を最短にやり直し、エージングを1時間した結果

無変調時のDC入力23.06W、LPF out 17.2W RFアンプ効率74.5%が最終値となりました。

Lpf_mod3a

上は変調段の後のLPF計算結果です。実際の回路では、L1=200uH、L2=130uH、C2=4.4uFとなっています。 このLPFはオーディオ信号で鳴きます。かなり歪んだ音です。マイクをつなぎハウリングは起こりませんので、現状のままです。 (その後、L2とフライホイール回路のコイルとの結合が問題となり、L2は廃止しました。)

計算URLは下に再掲します。

http://gate.ruru.ne.jp/rfdn/Tools/BlpfForm.asp#p1

E級アンプの検討開始時、VK1SVの設計シートを紹介し、うまく行かなかったと書きました。 しかし、うまく行かなかったのは私のやり方が悪かった為で、 今回は、かなり当てに出来るデータが得られました。

http://people.physics.anu.edu.au/~dxt103/calculators/class-e.php

そのURLを再掲しますが、ここの計算で重要なのは、トランスの1次:2次の巻数比でした。 巻数比は計算上では、小数点付で表示されますが、ここは1か2か3の整数しか無いという事です。色々なパラメーターを調整し、巻数比が整数になるようにしなければならないという事です。 今回、再計算するに当たり、電源電圧14Vと固定して、その他のパラメーターを設定しますが、VoとかL1は固定されますので、主にPOWERを選択して、トランスの巻き数比を2.0xくらいにします。この状態で得られた、L2をそのまま採用し、C1とC2を調整すると、計算で得られた容量の60~70%くらいで最適となりました。 L2は必ず、LCメーターで計測されたインダクターか、アンテナアナライザーを使い、既知のコンデンサとの直列共振周波数を求め、これから算出されたインダクタンスが目標値の最少誤差になるよう調整して置くのがキモです。

また、計算シートにあるようにQ=5からスタートしたらいいのですが、巻数比を3.0にすると、誤差が大きくなりますので、Q=3くらいまで落とした方が良いみたいです。 ただし、巻数比が大きくなるに従い、効率はどんどん下がっていきますので、巻数比2.0が最適なようでした。

このようにして、最大効率のC1,C2を求めた後、空芯コイルで作ったL2のピッチを微調整します。 C1,C2が計算通りにならない主な理由はQをいくらにするかという事のようです。 通常、動作状態のQを予想するのは難しく、ここで労力を使うより、計算値よりずれる事を受け入れる方が楽です。

ファイナルの電源をOFFにして、変調器のLPFを検討しようと、ハンダゴテを使い部品交換をしていましたら、誤ってFKI10531のソースとGNDをショートしてしまいました。電源OFFにしてあるので安心してましたが、FKI10531がショート状態で壊れてしまい、手持ちのFETを全部使い果たしてしまいました。  

Amtx_0211vomp

この原因は電源ラインに挿入した2200uFの電解コンデンサが放電せずに残っており、ソースとGNDをショートしたとき、電解コンデンサの放電電流が流れ、FETを電流破壊したものでした。 対策として、この2200uFの両端に5.6KΩの抵抗をパラに入れ電源OFF時はすぐに放電するようにします。

左がこれまでの対策を全て盛り込んで、完成したPWM変調方式AM送信機です。

ファンの音が少し気になりますが、FETが壊れるよりはましですので、我慢する事にします。

Wout_bpf0212

Bpf_add0212

Amtx_wbpf

左上は、この送信機でフルパワー出力時の高調波レベルです。Qをかなり高くした、7次LPFでも第2高調波を十分に減衰させる事は出来ていません。 右は、この出力の後に、TS-930Sに内臓していた7MHz用BPFを取り付けたものです。 33MHz付近でPWMアンプのフィルターから放射されたノイズがBPFに誘導しています。 左の写真がBPFを取り付けてエージングをしている様子です。 クラニシのパワーメーターは17.5W付近を指しています。 さすがにKENWOOD設計のBPFだけあって、挿入ロスはほとんどありません。

AUX端子からの音質は問題ないのですが、TS-850Sにヘッドフォーンを付け、マイクに向かってしゃべってみると、高域が抜けた、了解度が悪い音質になっていました。 原因は、常用しているマイクの出力インピーダンスが50KΩであり、これを10KΩのボリュームで受けた為、高域が落ちてしまったものでした。ボリュームを50KΩに換えればOKなのですが、あいにくスイッチ付の可変抵抗器が有りません。やむなく、OP-AMPを追加し、50KΩで受けるように変更しました。 

配線図 AMTX_13.pdfをダウンロード (IC6の in,outが逆です。)

この状態でTSSに申請しましたが、音楽を変調した信号により、フルパワーでダミーロードをドライブし、そのおこぼれを、TS850Sで聞いていると、曲によって歪が気になる事があります。 しばらくは、正弦波ではなく、音楽信号による歪改善が必要なようです。  実際にON AIRするのはいつになる事やら。

TSSに提出した送信機系統図2nd_TX_AM_BlockDia.pdfをダウンロード

リミッターアンプ追加 へ続く。

INDEXに戻る

2016年2月 6日 (土)

放熱設計

<カテゴリ AM送信機(PWM方式)

こいう事を巷では「どろ縄」と言います。

28Vの電源に1分くらいつないだらFETが壊れてしまいました。しかも、E級アンプと変調用のD級アンプ、ふたつともです。 この対策を考えていましたら、パワーアンプで最初にやらねばならない放熱設計が完全に抜けていました。 FETシングルで何ワット出力できるか? パラレルでは何ワット?という以前の問題でした。

そして、改めて放熱設計を検討する事にしました。

Heatsink3 

 上の表は、放熱設計の基本を表にしたものです。 各熱抵抗はFETの品種ごとに決まった値になります。 また、使用する放熱板やFETを放熱板に固定する方法で決定される数値です。 これらの数値から、今回の送信機では、FETに許容出来る最大損失が10Wであると計算されました。 

次に実際の使用環境を考察します。  この送信機はAM送信機ですので、無変調時の定格出力と100%変調時の最大出力を考慮必要です。最大出力は無変調時の1.5倍となりますので、定格出力状態で論議するときの最大許容損失も、10Wの1/1.5の6.7Wになります。 この6.7Wを超えたら、このFETが壊れるわけですから、ディレーティングという考え方を行い、最大許容値の70%を通常状態と設定します。この通常状態での許容損失は4.7Wとなりました。

E級アンプの効率を仮に80%と仮定すると、4.7Wの許容損失になる時のDC入力は23.3Wとなります。 ここから4.7Wの損失を引き算して、アンプの出力は最大で18.7Wとなります。 この18.7WにはLPFの挿入損失は含まれていませんので、現在のLPF挿入損失-1dBを考慮すると、LPF出力部での最大出力は14.8Wと計算されます。

FETが90%変調状態で1分くらいで壊れた時、LPFを通過した後の無変調出力が21Wくらいでしたから、FETが壊れても不思議ではありません。

これから、回路を再設計するに際し、測定誤差もありますので、一旦、目標最大出力はLPF挿入前で18Wと置きます。  18W以上が欲しければ、FETパラレルドライブにして、放熱板も2倍の放熱量を確保できるサイズにしなければならないという事です。 FETパラレルドライブの出力アップ構想も許容放熱量の制限から不可となりました。

なお、ここでシングルFETで最大18Wというのは、フルモールドパックのFETと、秋月の小さな放熱板での話で、ドレインが直接フィンに接続された絶縁が必要なTO-220や、ファンの付いた放熱器を採用する事により、この2倍くらいの出力まで上げられる事は補足して置きます。

これらの条件を実際の回路に当てはめようとすると、そう単純にはいきません。 まず、LPF挿入前の出力というのが測定できません。 電力計が熱電対型の真の実効値を検出するタイプなら問題ありませんが、クラニシの電力計やCM結合器を使った通過型電力計の場合、LPFを通る前の大きな歪のある信号の電力を計る事は不可能です。 これらの電力計は正弦波の片方のみをダイオードで整流して、その直流電圧から電力を換算していますので、歪が生じたとたん、指示された電力値は誤差が大きくなります。ひどい時は入力されたDC電力よりも測定された高周波電力が大きいというウソのデータも出てきます。 従い、LPF単体の挿入損失を正弦波の信号源を使い、実測で求めておき、LPF出力端で測定した電力からLPF無しの出力を計算で割り出しています。

E級アンプを再設計するに当たり、一度熱暴走で壊している負い目がありますので、最初は14Vの電源で10Wくらいを目指して、回路設計を行い、おそるおそるFETや放熱板を手で触りながら、パワーを上げるかどうかを判断することになります。

そんな訳で、フライホイール回路のコイルを0.61uHとして、この状態で最大効率が得られるように各定数を調整した結果以下のようになりました。

Amtx_comp_out1_2

上の段は、変調器なしでRFユニットに直接DC14Vを加えた時のもので、LPF通過後、9.1Wの出力となり推定出力は11.5W、76.4%の効率となりました。 RFアンプ効率というのは、LPFのロスを含んだ全体の効率です。

下段は、変調器を接続し、電源電圧も28.2Vに上げた時のデータとなります。 変調器とRFユニットの間にあるLPFのインピーダンスが影響していると思われますが、単体の時より効率が上がり、LPFなしの推定効率は80%くらいで、まずまずです。

Amtx_vdvg

Amtx_rfout 

左の画像の下の波形がVg、上の波形がVdです。 オシロの縦の目盛は20V/divです。 右側の画像はLPFを通った7MHzのキャリ波形です。

この状態で、PCから音楽ソースを入力し、1時間くらいのエージングテストを行いました。   RFファイナルの放熱板はかなり熱を持ちます。1秒以上触り続ける事は出来ません。多分50度を超えていると思われます。また、28Vから12Vを作る3端子レギュレーターも負けずに熱くなっています。 変調器のFETは100x120mmのアルミ板にビス止めしてありますが、ほとんど温度は感じられません。

E級アンプの放熱板に定格12Vのファンを8Vで駆動して風を当ててみました。すると放熱板の温度はずっと指を当てていられる状態まで下がり、出力も以下のようになりました。

Amtx_fantukiout

 

効率83.5%はマユツバものですが、ファンで強制空冷するとかなり効果がある事はわかりました。ファンを恒久的に取り付ける方法を考える事にします。

一方、1時間もエージングすると、7MHzのLPFのコアがかなり熱くなります。これは、なるべく早く改善する必要があるようです。

今回の変更でE級アンプのインピーダンスは14Ωくらいになりましたので、従来、7.2Ωで計算されていた変調器のLPFのままでは、変調の周波数特性が変わり高域が、かなり出るようになりました。スイッチングの250KHzも減衰量が減ったと思われます。 この変調段のLPFは周波数特性のみに影響すると思っていましたが、インピーダンスが大幅に違うと、オーディオの波形が歪む事を発見しました。 E級アンプの負荷インピーダンスが10倍を超え始めると次第に歪を目視できるようになります。 従い、きれいな変調を維持する為には、常にこのフィルターのインピーダンスはE級アンプに合わせておく必要がありそうです。 

最新回路図 AMTX_11.pdfをダウンロード (IC6の in,outが逆です。)

LPF改善 に続く。

INDEXに戻る

2016年1月31日 (日)

変調性能確認

<カテゴリ AM送信機(PWM方式)

変調部とRF部が完成しましたので、電源電圧13.8Vの状態で、AM送信機としてまとめ、変調の度合いを確認する事にしました。 出力はLPFを通った後4.5W出ています。

Amtx_comp

左は、コの字の形に曲げたアルミシャーシの上に、変調部、RF部、及び送信のスタンバイスイッチやマイクジャックを設け、一応送信ON/OFFが出来るようにしたものです。 送信のON/OFFはできますが、受信機の制御まではまだ出来ていません。 実際にON AIRするまでには、追加予定です。

ひとつのシャーシにまとめるに当たり、変調器、水晶発振器など前段の部分は実験用のシリーズ型安定化電源から電源を供給し、RFと変調器のファイナル部分はKENWOODのPW18-3ADという、れっきとした工業用電源から供給していました。 キャリアを無変調でダミー抵抗に送信し、それをTS-850SをAMモードにして受信すると、すさまじいハム音です。しかもかなり高調波も含まれています。 そこへ、ダミー抵抗にオシロを接続して変調波形をモニターしようとすると、このハム音がさらに大きくなります。

困りはてて、再度分解して、電源回路に電解コンデンサを追加したりしましたが、一向に改善しません。 KENWOODのDC電源の+/-両端にオシロをつなぎ、ゲインを最大にすると、かすかに方形波が見えますが、それが変調器に混入している訳ではなさそうです。 とりあえず、この電源を止めて、いつも使っているFT-991用のDAIWAのDC電源に交換して見ました。 すると、ハム音は画期的に改善しました。 工業用電源は選択可能な電流リミッターやデジタル表示の電圧、電流計や、プリセット機能など、回路検討時は大変便利なものですが、自身のノイズ対策がかえってGNDラインをノイズでフローティングするようになってしまうようです。

ファイナルの電源をFT-991用にしても、ハム音は完全にゼロでは有りません。 そこで、前段に接続されているアナログ電源をはずし、前段もFT-991用の電源から供給するようにしてやると、きれいにハム音が消えました。 ふたつのACトランスを介した電源では、ハムの誘導ノイズが消えないようです。

Music_mod

PCのヘッドフォーン端子から音楽信号を入力できるようにしてテストしてみると、懐かしいAMラジオの音がTS-850Sのスピーカーから聞こえてきました。 左の波形は音楽で変調されたキャリアです。 ピークで90%くらいまで変調がかかっております。

音楽はスペクトルの範囲が比較的狭い昭和の音楽ほど良く聞こえました。 そして、歪感は全くありません。 計画当初、変調後のRF信号を検波して、PWMアンプの差動入力端子へ負帰還をかけようと考えていましたが、その必要は全くないようです。

変調器ファイナルのデュティを可変できるようにTLP552のLED電流を調整する半固定抵抗VR3を追加しました。 これで、変調段のLPF出力ポイントでのDC電圧を供給電源の電圧の1/2に調整しようとしましたが、半固定を最少から最大まで可変しても、この電圧は0.数ボルトしか変わりません。 470Ω固定でも問題ないようです。 また、RFが変調回路に回り込んで、波形歪を起こす対策として、OP-AMP入力の+/-端子間に1608タイプのチップコンデンサ1000PFを追加しました。 

実験は13.8Vの電源で行いましたが、最終的にはこの電源電圧を28V以上にアップする予定ですので、MOS-FETによるシリーズレギュレーターを追加しました。

28V以上のDC電源はジャンクのTS-930Sの電源から取り出す事にしました。このTS-930Sは動作しませんが、電源だけは生きています。 整流直後の電圧は40Vくらいあり、これをシリーズレギュレーターで28Vに安定化しています。 しかも、28Vで10A以上の容量がありますので、今回のAM送信機の電源としては、ちょうど良さそうです。

FETによるレギュレーターを実装し、電源電圧28Vで送信テストを行ったところ、20W出力され、成功と思いきや、90%の変調にすると、1分くらいで送信不能になりました。 直接の原因はRF部のファイナルSTF19NF20のドレイン、ソース間ショートですが、その原因は熱暴走と思われます。 今まで25W出力のテストもしてきましたが、それはせいぜい30秒以内の動作でした。 今回のように1分近く動作させた事がありませんでしたので、シリコングリスも塗布していない事によりFETが熱破壊したと思われます。 そして、当然変調段のFKI10531もドレインソース間がショートしていました。

また、追加したFETのレギュレーターは異常発振を起こし、その上、7MHzのRF信号が混入し、電圧制御不能なっていました。 このレギュレーターはリップルリジェクションが非常に良いことで知られ、LDOという名称で、もてはやされてていますが、負荷側の変動や、高周波妨害に対しては極端に弱いようです。 7812のようなバイポーラの3端子レギュレーターに変更します。  

また、壊れたRFファイナルを修理し、元の状態に戻すまでかなり時間がかかりそうです。

失敗した回路図 AMTX_10.pdfをダウンロード

熱暴走を少しでも対策する為に、さらに、効率アップが出来ないかも再検討する事にします。

放熱設計 へ続く

INDEXに戻る

2016年1月17日 (日)

E級アンプ 出力アップ検討

<カテゴリ AM送信機(PWM方式)

AM送信機のRFユニットの効率が、WEB上で紹介されている例に比較して、かなり落ちる原因を調べる目的で、RFユニットだけの検討を行いました。

Eamp_2a

 上が検討したE級アンプの回路で、コイルはその時の出力に応じて選択しています。

Etest

Vdの波形をオシロでモニターしながら、VC1とVC2を交互に回し、最良ポイントを探しますが、教科書通りの波形に近くなるように調整する事により最大効率ポイントが見つかります。この効率最大ポイントと出力最大ポイントは異なります。どちらかと言えば効率優先です。また、このVdの波形がきれいになる為にはゲートをドライブするデューティも大きく影響します。 従い、回路図には出ていませんが、VXOのバッファーアンプのベースバイアスを調整して、ドライブのデューティが可変できるようにしてあります。 実験開始時は、ファイナルのトランスにTS930S用の入力トランスを使用していましたが、10Wくらいで、ほんのり暖かくなるので、また出力トランスに戻しました。

この検討の途中で効率90%超の数値が時々出る調整ポイントがある事が判りました。しかし、その時のVdの波形はオシロのトリガが安定しない程、寄生振動を伴った波形で、LPFを通った後もFM成分とAM成分を持ったかなり汚い信号になっていました。 E級アンプはオシロが手元にある場合のみ自作できる回路かも知れません。

このようにして、2SK3234とFKI10531で最良ポイントを求めた結果は以下の通りです。

Efet1 2SK3234の場合、Vdを13.8Vに固定して、コイルを変えて最適ポイントを探したものです。10W以上の出力が出るようにコイルを小さくすると、効率が50%を切りますので、10W以上の検討はしていません。

一方、FKI10531の場合、13.8Vで20Wくらいの出力になるようコイルを選択した後、調整ポイントは動かさずにVdを18.4Vや9Vに変えたものです。 18.4Vで40W出て効率も72%となっています。このFETの場合、最高効率が得られるVdはもっと高い電圧かも知れませんが、DC電源の電圧がこれ以上上がらないのでテスト出来ていません。 ちなみに、この時のVC1の値は170PF、VC2は700PFでした。

そして、写真にもあるように、バリコンを接続して、最適容量を探し、そのバリコンと同じ容量の固定コンデンサに置き換えても、バリコン使用時と同じ状態になりません。 バリコンまでのリード線がもつインダクタンスや、図体がでかいことによる浮遊容量の影響が無視できないようです。 以後、面倒でも固定コンデンサを付けたり外したりして検討する事にしました。

これらの結果から、FETのスペックと、このE級アンプの性能についての関連性を調べてみる事にしました。

Fet_spec

 上の表は手元にあるFETのスペックを抜粋したものです。 限界FREQというのは私が勝手に作ったデータでtd(on),tr,td(off)及びtfの合計値の逆数で、基本的にはこの周波数以上では正常にスイッチングしないという周波数です。 ただし、個々のFETで条件が異なり、実際に使用している条件はこれ以下の環境という事もあり、表示された周波数より上の周波数でもスイッチング動作はしております。 従い、比較したときの目安として気にしたらよいデータと考えます。 また、個々のタイムスペックはメーカー発表のノーマル値ですので、実際はこれ以下の周波数になる事もあります。

このようにして眺めてみると、サンケンのFKI10531はON抵抗を含め最良の数値を示しています。  他の3種類の限界周波数は似たり寄ったりで、バラツキによっては逆転するくらいの実力ですが、効率に関係するオン抵抗の値がそのまま表れている感じです。  また、データとして残していませんが、限界周波数も最も低く、ゲート入力容量が最も大きい2SK2382は、最大出力も効率も全くダメでした。

ただ、FKI10531にも欠点があります。それはゲートの入力容量がこの中では比較的大きいことです。これは、ドライバーICの負担が大きく、TC4422がアッチッチになる原因のようです。そして最大の欠点は耐圧が100Vしかないという事でしょう。  40W出力のときのVdmaxは75Vでした。AM送信機の場合、ピーク電力を確保する為にVdを上げますので、これがネックになります。

8vvd

一応、FKI10531 1石で定格出力10W(ピーク出力40W)のAM送信機を作る事は出来る事は判りましたが、激しいリンギングの為、動作が安定しません。

左は、FKI10531を9Vで動作させた時のVdの波形です。 ピーク部分で凹みが出来ていますが、長時間送信していると、温度が変わり、次第に波形が崩れます。これは使用しているコンデンサの温度特性が大きく影響し、発振寸前の帰還状態がクリチカルになっているのが原因のようです。

色々検討している内に、FKI10531を2個もショート状態に壊してしまいました。 また、リンギングは出力インピーダンスが小さくなるほど出易いようです。 そこで、この際、FETも変更し、電源電圧を上げられるE級アンプを再設計する事にしました。

Fet_spec2_2 

ところで、私の手元に有った、IRF640はIR製ではなく、セカンドソースだったようです。 WEBで紹介されているIR(インターナショナル レクティファイアー)製の場合、私が勝手に定義した限界周波数がリーズナブルの周波数を示すようです。 上の表はIRオリジナルのIRF640のスペックを抜粋したもので、納得出来る限界周波数を示しています。

そこで、IR製のIRF640を手配しようと考えたのですが、入手できるのはTO-220でドレインがそのままフィンにつながっている物しか有りませんでした。 出来たら、フルモールドパッケージのFETが無いかRSで物色しました。 結果、IRF640と似たようなスペックを持つSTマイクロのFETが見つかりました。 上の表にその仕様の抜粋を示します。  STF19NF20は、TO-220Fパッケージで絶縁シート無しで放熱板にビス止めできます。 このほど、このFETを手配出来ましたので、同時に入手したTC4452を使い、下記のように回路を改造しました。 TC4452はVdd端子がフィンに接続されていますので、絶縁シートと絶縁ワッシャは必要です。  (後日、フルモールドパックを選択したのは間違いだったと後悔します。 面倒でもマイカシートで絶縁し、シリコングリスたっぷりのドレインむき出しのFETの方が良いです)

OSCバッファーとFETドライバーの間に挿入されていたインバーターがDC直結になっており、OSC段の異常でFETのゲートがHになりっぱなしという現象が再現しましたので、OSCバッファの出力をコンデンサでDCカットし、インバーターをC-MOSに変えました。C-MOSの入力にはプロテクトのダイオードが実装されていますので、このダイオードで入力信号が0Vでクランプされ、うまく動作します。 ただし、そのままでは、入力が無いとき、FETゲートは常にHとなりますから、もうひとつインバーターを入れてあります。

Eamp5

Rfunit5

また、基板上のレイアウトも変更し、TC4452とSTF19NF20は基板上に配置した放熱板に固定し、リンギング対策としてFETの出力ラインは5mm幅の短冊状に切った厚さ0.3mmの銅板で配線し、極力浮遊インダクタンスを削減しました。

左がその基板ですが、TC4452とSTF19NF20のパラレルドライブが可能なように配置してありますが、今はシングルドライブです。

この状態で、電源電圧13.8Vのとき、15Wの出力が得られ、効率は63%くらいです。

TC4452の消費電流は200mAくらいでTC4422と同じですが、FETのゲート電圧波形が気持ちだけ良くなりました。 また、このゲートドライバーも終段FETと同じ放熱板上に止めてある関係で、長時間連続送信でも安定しています。

Amtx_640hz

このRFユニットを変調器と組み合わせて見ました。 電源電圧を18.4Vにすると、無変調時の変調器DC出力は9Vとなり、RF出力は7Wとなっています。 最大変調度は、87%くらいで、電流の増加はありますが、クラニシの終端型電力計は7Wのままです。 この電力計は熱電対型ではないので、変調度が変わっても指示は変わりません。 少なくとも、マイナス変調にはなっていないようです。

 左の波形は680Hzで変調した時の波形です。 現在、RFユニットと変調ユニットを無造作に置いてある為、RFが変調器へ回り込み、波形が崩れる事もあります。 実際に組み立てる場合、配置やシールドを検討する必要があるかも知れません。

 

New_lpf0129

7MHzのLPFは計算で求めた定数のままで、特性の確認はやっていませんでしたので、出力側に50Ωのダミー抵抗をつなぎ、入力側にアンテナアナライザを接続してSWRを計ってみました。すると、7MHzでSWRが2を示します。インピーダンスは25Ω付近です。周波数を3.5MHzまで下げると、SWR1.1くらいになります。 どうやら、計算間違いがあるようです。 このLPFは再設計する事にします。

上が、新たに設計したチェビシェフLPFの定数です。 計算は下記URLで行いました。

http://gate.ruru.ne.jp/rfdn/Tools/ClpfForm.asp#

計算されたインダクタンスやキャパシタンスを実装できる訳はありませんので、自由の効かない、インダクタンスを一番近い巻き数にしておき、後は、コンデンサで微調整した結果が上の定数です。

Lpf0129

このLPFに50Ωのダミー抵抗をつなぎ、入力部分に自作のアンテナアナライザーを接続した時の周波数対SWR特性を表示させたグラフを左に示します。 SWR最少周波数が7.200MHzで1.16となっており、そこそこの特性は得られているものと考えます。 しかし、事前確認では、かなりの挿入損失が有りそうでした。

過去、いくらやっても、60%かそれ以下の効率しか出ないのは、このLPFの挿入損失の性かもしれません。 そこで、新たに作成したこのLPFでLPF有り無しの時の効率データを取ってみました。

Lpf_pwr

結果は下の表の通りで、LPFが無い場合のE級アンプの効率は74.8%とそこそこの値が出ていますが、LPF有りの場合、62.1%となり、LPFだけで、27%もロスしております。 今回のLPFはコイルにT-50-2というトロイダルコアを使ったものです。 今までのLPFは定数設定に誤りがあり、LPFのロスも30%を超えていたようです。

E級アンプの効率が悪いのは、LPFの問題であり、実験した回路で、世間並の効率は確保されている事が判りましたので、以降、単純にパワーアップに絞って検討していく事にします。

E_amp0130

左の表は、E級アンプの回路を当初のコイルとコンデンサが直列に接続されたフライホイール回路に戻し、トランスを1対3の巻き数として、最適値を探した時のデータです。 LPF無で、81.6%の効率は良く出来た方と思われます。

E0130vd

左の波形は、12.84Vで15Wの出力が得られている時のVdの波形です。 ほぼ教科書通りの波形をしています。 また、リンギング対策もかなり効いてきました。 

電源電圧を17Vくらいまで上げると、LPF付でも25Wの出力が得られていますので、 定格出力20W(ピークパワー80W)のAM送信機がこのFET1石で可能かも知れません。 これから、36VのDC電源を模索します。

Eamp0130

左は、E級アンプのファイナルとフライホイール回路及び出力トランスの部分です。 使っているコンデンサは200V耐圧のセラミックで、わざわざ温度特性がかなり良いB特を選定しましたが、パワーON直後の1分くらいは出力が変動します。 最終的には、シルバードマイカに変更しなければならないかも知れません。

左の隅に一部写っているのが問題のLPFです。これは、この送信機が完成した後、再検討する事にします。

ここまでの配線図 AMTX_8.pdfをダウンロード

変調性能確認 へ続く

INDEXに戻る

2015年12月28日 (月)

7MHz RFユニット

<カテゴリ AM送信機(PWM方式)

AM送信機のRFユニットの作成です。

まず、7195KHzと予備として7190KHzをカバー出来るVXO回路を作る事にしました。

 

Amtx_vxo_2

7.2MHzという水晶はAM/FMラジオ用PLLシンセの基準周波数として使われていたものですが、最近、この周波数の水晶が大量に格安で売られています。 今回は「aitendo」という通販ショップから購入しました。 

この回路で7199KHzから7188KHzまでの11KHzを可変できます。水晶に直列に入れたコイルはSMTタイプの固定インダクタですので、最適インダクターとはなっていないかも知れませんが、目標とした2つの周波数は確保できましたので、良しとします。

AMのもうひとつの常用周波数である7181KHzをカバーするVXO回路の製作はこちらにあります。

次に、ドライバーとMOS-FETによるファイナル部分です。

送信機全体の回路図 AMTX_0.pdfをダウンロード

Q3でTTLレベルまで増幅し、波形整形の為、CMOSゲートを通した後、FETドライバーのTC4422に入力し、その出力でMOS-FET FKI10531をドライブします。FETのドレイン側にはチョークコイルとフライホイール回路とインピーダンス変換トランスを設け、7MHzの7次LPFを通してアンテナに出力されます。 E級アンプの基本回路では、FETのドレインとGND間にCdsなるコンデンサが必要なのですが、FETのドレイン、ソース間に120Pの出力容量が存在しますので、60PFのトリーマーだけを入れてあります。 このトリーマーを回しても、出力や効率はほとんど変化しませんが、Vdの0V付近で発生するリンギングの様子が変化します。 調整はこのリンギングが最少となるポイントに合わせました。

この回路は下記のURLを参考に、13.8Vの電源で50Wを出そうと考え、設計しましたが、残念ながら出力も効率も全くダメでした。 (ダメな原因は私の使い方でした。ここで正しい使い方を紹介しています。)

http://people.physics.anu.edu.au/~dxt103/class-e/

当初6V12.5Wで設計したのですが、2SK3234で1Wしか出力できず、効率も30%以下でした。 色々WEB情報を調べても、6V12.5Wクラス(12V50W同等)のアンプは130KHzくらいのアンプの例しかなく、7MHzくらいの周波数では無理があるようです。 従い、6V5W(12V20W相当)まで出力を落とす事にしました。しかし、2SK3234ではどんなに頑張っても3Wくらいしか出ず、効率も50%くらいでした。 また、手元にIRF640もありましたので交換したところ4W出ましたが、効率は50%止まりでした。 そこで、変調器のFETはサンケンが一番良かったので、キャリア増幅用もサンケンのFKI10531に換えてみました。すると、5Wの出力で効率も60%くらいまで改善しました。 

Amtx_6v_test

手前の基板がVXOとキャリア送信部です。 今回はVXOの出力は使用せず、アンテナアナライザーから7195KHz付近のキャリアを入力し、周波数を可変しながら、フライホイール回路が最適になっているかをテストしました。 基板上の黒い四角の物体はメガネコアで、ジャンク扱いのTS-930Sのファイナル段から取り外したものです。1次側は銅パイプによる1ターンの巻き数で、2次側はAWG24のビニール線を3ターン巻いてあります。 この出力は左上にあるコイル3個のLPFを経由してクラニシの終端型パワー計につないであります。

FETのドレインに接続される10uHのチョークコイルもTS-930Sのファイナル段から取ってきたものです。

Amtx_7mout

左のオシロ波形は下がFETのゲート電圧波形で8Vピークあります。 E級アンプの技術資料には決まって台形の波形が登場します。1.8MHzくらいなら、きれいな台形波形をしていますが、7MHzともなると、だんだん角が取れてくるようです。 当初、教科書通りの波形にならないので悩みましたが、WEBで見つけた7MHzや14MHzの1KWアンプのゲート波形はこれよりもっとひどくなまっておりましたので、安心しました。 

上の波形はドレイン電圧の波形で、37Vピークあります。この時の正確なVDDは6.01Vでしたので、約6.2倍の電圧が発生しています。 このFETのVdmaxは100Vですので、16V以上の電源では使えないという事になります。 パワーアップする場合、再度FETの品種選定が必要です。  

Amtx_7mhz_out

左の波形は7次バターワースLPFを通過した後の7MHz出力波形です。見た目での高調波歪はかなりよさそうです。 変調器との結合が出来たらスペアナでチェックする事にします。 この7次バターワースLPFの計算もPWM変調器用LPFと同じURLで計算しました。

Eamp04uh_2

コイルのインダクタンスが少し大きいとおもわれますので、現在の約1μHから約0.4μHくらいまで小さくし、シリーズコンデンサを約1500PFくらいまで増やしてみましたら、左のようなきれいなVd波形となりました。パワーは6Vで4W出ていますが、効率は、50%前後まで落ちました。

その後、13V 10Wの出力になるよう定数を変え、実験しましたが、テストした3種類のFETいずれでも55%以上の効率を確保できませんでした。 効率が上がらない理由は、FETも関係しますが、コイルやコンデンサ、トランスが最適になっていないのが原因のようです。

E級アンプの調整箇所を少なくして、検討しやすくする記事が見つかりました。 これによると、コイルにシリーズに入るコンデンサを無くした代わりに、コイルの前後にコンデンサを追加し、コイルとコンデンサ2個を最良状態にもっていけばいいようです。 

フライホイール回路の直列共振コンデンサを廃止し、トランスも止めて、LCによるインピーダンス変換回路をジャングル配線で試したところ、2SK3234では55%の効率でしたが、FKI10531では75.5%まで改善しました。 ただし、5Vで1.5Wしか出ていません。 12V換算で9W弱ですから、目標にはまだまだですが、効率を上げる方法が判ってきました。

Amtx_01

効率を上げようとすると、出力にリンギングが激しく乗ります。これを対策する事を含めて、各回路の配置をやり直し、かつトランスも廃止したのが左の写真です。

コイル両端のコンデンサをバリコンに置き換え、コイルも効率最大となる値になるよう試行錯誤した結果4.8Vの電源で1.8Wの出力が得られた時のIdは0.392Aでした。 効率は95.6%と計算されました。 この時の負荷インピーダンスは約12Ωです。 

ここまで出来ると、後は、効率を我慢できるレベルまでダウンさせ、6Vの電源で何ワット出力できるか探ることにより、なんとか実用できそうです。

Vd_0109左は、この95.6%の効率の時のVdの波形です。従来の波形よりいびつですが、FET OFFの時のVdの面積が明らかに広くなっています。 また、この時の波高値は25Vくらいで、初期のころよりピークは小さくなっています。 この事は、Vdmax100VのFETでも電源電圧を19Vまでかけても良いという事になります。

この状態の時の回路図を以下に示します。

Amtx_rf1_3

当初の目標である6V 5Wの出力にトライし、効率78%を得ましたが、激しいリンギングが発生し、回路が安定しません。 リンギング対策は難航を極めました。 上のトランスの無い回路では、フライホイール回路に流れる歪んだ電流経路が多技に渡り、発振現象を押さえるのがとても難しくなりました。 そこで、最終的に、フライホイール回路のコイルの向きを90度変え、かつトランスを復活させフライホイール回路電流通路の単純化を行い、出力も3.4Wまで落とした結果、なんとか安定して動作するようになりました。この時の効率は70%くらいです。

Amtx0111

また、OSCとFETドライバーの途中に挿入したバッファーもインバーターに換えました。 これはOSC回路が動作停止したとき、ファイナルのFETのゲート電圧が8Vで固定され、大電流が流れ、FETが壊れるのを防ぐ為です。

復活したトランスはTS930Sのファイナルの入力段に使用されていた小型のメガネコアに変えました。

 変調器から見たインピーダンスは約7.2Ωとなりました。

ファイナルのFETはベースのアルミ板にビス止めしてある事もあり、ほとんど発熱しませんが、TC4422はかなり熱くなります。 このICはスペック的にデータが公表されているのは2MHzまでで、7MHzは実力で動作していますので、製品ロットでかなりバラツキがあるのかも知れません。 データシートによれば、FETのゲート容量1500PFで、8Vの時の消費電流は2MHzにて74mAくらいと予想できますが、実際の回路では7MHzで200mA流れています。 次回の検討では、このICよりもう少しドライブ能力の高いTC4452を手配してみる事にします。

修正した回路図 AMTX_2.pdfをダウンロード

TC4452手配がまだですので、先にパワーアップ検討を行いました。

E級アンプ 出力アップ検討 に続く。

INDEXに戻る

2015年12月19日 (土)

PWM変調器

<カテゴリ AM送信機(PWM方式)

7MHzバンドで使えるPWM変調方式のAM送信機を作る事にしました。 CQ誌に掲載されたオール半導体によるPWM変調方式のAM送信機の記事を見て、作ってみたくなったのがきっかけです。

WEB上にあるOM諸氏の記事や解説を頼りに、構成を決め、机上検討していましたが、いよいよ部品集めの段階になり、ぼちぼち、部品が集まってきましたので、まずは変調回路から試作する事にしました。

Amtxmod1

Amtxmod2

 

Amtx_mic_freq

マイクの入力感度は-50dBmくらいですので、最大ゲイン60dBくらいのオーディオアンプの初段にDual-GateのFETを使い、G2の電圧をコントロールしてリミッターアンプ機能を付けています。また、3KHzをカットオフ周波数としたOP-AMPによる3次LPFも実装しました。 これらのアンプの動作テストも行い、リミッターがちゃんと動作する事は確認済みです。 ただし、リミッターのアタックタイムやリカバリタイムは実際にマイクに向かってしゃべってみないと良く判らないので、送信機が完成した時点で再調整します。 Dual-Gate FETの最大VDDは6Vなので、8VのLDOの出力をダイオードとLEDで無理やり5Vに電圧シフトして使っています。 これらのテストの為、作成したPICマイコンによる正弦波発生器は重宝しております。

このマイクアンプの出力は、TPA2006というTIのPWMオーディオパワーアンプに入力し、スピーカー出力用の+側端子からPWM波を取り出し、これをフォトカプラー経由でMOS-FETの終段をドライブします。

Amtx_1khz_tpa2006out

PWM変調に使うTPA2006は秋月で2.5ピッチの変換基板付で300円で売られているものですが、入力端子にシリーズに付いている抵抗とコンデンサは変更してあります。  左の波形は、このアンプのPWM出力をLPFを通した時の1KHzの波形です。 5Vの電源で4Vppの無歪出力が得られています。出力を上げていくと4.5Vppくらいからクリップしますので、リミッターアンプがクリップ寸前で飽和するようにVR2により調整します。

このパワーアンプの出力はVR4を経由して、高速フォトカプラーに入力されます。 この入力抵抗が5KΩの半固定抵抗になっているのは、内部のLEDとフォトTRのバラツキで、PWMのデュティが変わってしまうので、これを調整する為のものです。 最終的に7MHzのE級アンプに接続して、無変調状態で、E級アンプに供給されるDC電圧がファイナル用電源電圧の1/2になるように調整します。

Amtxpwmfetcomp_2

左の表は、最終段のMOS-FETの品種を変えて、測定した出力電力です。

FETのドレインに13.2Vを加え、ソースとGND間に2.2Ωを負荷として接続し、無変調状態で、この負荷抵抗の両端電圧と電流を計測したものです。 オシロスコープでモニターし、いずれも250KHzのデュティ50%の矩形波である事は確認しています。

結果は、秋月で1個40円で売っていたサンケンのFKI10531が一番良い結果を示しました。このFETはON抵抗は小さいのですが、入力容量が1500pFくらいありますので、7MHzのキャリア増幅には向かないかも知れません。 変調段は250KHzでのスイッチングですので、変調段のFETはサンケン製に決定します。

Amtxlpf_cal

左の表は、PWM終段のFET出力からE級アンプまでの途中に挿入されるLPFの計算結果です。 LPFは3段バターワースでカットオフ周波数を9KHz,入出力インピーダンスを1.8Ωとして設定してあります。 この計算はWEB上で計算方法を公開しているRFDNのサイトで計算しました。 URLは以下です。

http://gate.ruru.ne.jp/rfdn/Tools/BlpfForm.asp#p1

3dBカットオフ周波数と250KHzの減衰量を指定しますが、3段のLPFにしたいので減衰量は80dBとしました。次にLPF パイ入力型でインピーダンスを1.8Ωにしてやると、この表のような結果が得られます。 後日検討するE級アンプのインピーダンスをシュミレーションしましたら、1.8Ωくらいで出力10Wが得られるようですので、LPFのインピーダンスも1.8Ωで計算しました。

トロイダルコアにコイルを巻いて必要なインダクタンスを確保しますが、手持ちのトロイダルコアに1mmのPPシートによるギャップを2か所設けて、重畳される直流電流で磁気飽和しないように配慮した上で、1.5mmのPEW線を27ターン巻き約64uHを確保しました。 コアは北川工業のGTFC-41-27-16という品番です。 

Amtx_lpf63uh

左の画像は、トロイダルコアに巻かれたコイルに0.0056uFのマイラーコンデンサをシリーズに接続し、自作のアンテナアナライザーで共振周波数をチェックしているところです。  

L1の63.7uHと0.0056uFの共振周波数の計算値は約266KHzですが、実測値は263KHzでしたので、ほぼOKと思われます。

トロイダルコアはFT-140#61が一般的に入手しやすいのですが、たちまち手持ちがありませんでしたので、かなり特殊な北川工業のコアを使いました。 また、今回はLW帯で使用可能なアンテナアナライザーで測定しましたが、コンデンサを0.0056ではなく100PFにしてやると計算上は約2MHzの共振周波数となります。 しかし、一般的な1.8MHz以上で使用可能なアナライザーでは、コイルの浮遊容量などの影響で正しい共振周波数を見つける事は出来ませんでした。

 2016年1月10日 追記

LPFの定数が決まり、変調段だけのテストしたら、波形が大きく歪みます。原因を調査したところ、フォトカプラーの選定ミスという事が判明しました。TLP552クラスを選定しないとPWMのスイッチングスピードに追いついていかないようです。 TLP552を手配している間に予備検討したところ、スィッチング周波数250KHzは高すぎるかも知れないという不安がありました。 

TLP552が入手できましたので、各段における歪状態を確認する事にしました。

Mod_tpaout_clep_2

Mod_tpaout__2Mod_fet_sout_

波形は左側がPWMオーディオアンプのスピーカー出力端の波形で上下がクリップした状態で、このレベルから1dB下げた状態が真ん中の波形です。 右側が終段FETのソースとGND間に4.4Ωのダミー抵抗を接続し、その両端にLPFを接続した時の波形です。ひずみやクリップは有りません。 この状態でレベルを1dBアップすると、この出力も上下がクリップ始めます。 

スイッチング周波数が高すぎるのでは心配しましたが、波形を見る限り問題はなさそうです。

 

Mod_lpf1_2

RFユニットのE級アンプがなんとか使える状態になりましたので、インピーダンスを再設定して、LPFを再設計することにします。

E級アンプのインピーダンスは実測で7.2Ωとなりましたので、3dBカットオフ周波数を10KHzとして、再計算した結果は左の表のようになりました。 L1の値がかなり大きくなりましたので、コイルは作り直しです。 インダクタンスが大きくなりましたのでコアに挟んだギャップスペーサーは全て廃止し、ワイヤーも1mmのUEWに変えました。

さあ、出来たと、RFユニットと結合して変調の度合いを見る事にしました。ところが、1KHzのプラス側半分がつぶれた波形で、流れる電流も単体のときの約2倍。 まったく使い物にならないひどい変調です。 単体のときのモニターではきれいな正弦波が得られていたのにと焦りました。 原因はLPFのC1の存在でした。C1はFETのソースとRFのGNDの間に接続され、ここで250KHzのキャリアがフィルターへ行かずバイパスされていました。 変調回路のフィルターはパイ型は使えないということです。 C1の2.2uFのコンデンサを廃止し、その他のLCはそのままで、インダクターインプット型にするときれいな正弦波で変調がかかりました。

Amtx_mod90

上の波形が7MHzのキャリアに1KHzの変調をかけた状態です。 電源電圧は9VでRF出力は約1.5Wです。 残念ながら、この状態が約82%の最高変調度で、これより少しオーディオゲインを上げると1KHzの波形が上下でクリップ始めます。 原因は大体推測は出来ます。 FETの飽和電圧と思われます。 波形を見ていると、過大入力が有っても、このオーディオ信号のクリップの為、7MHzのキャリアがゼロになる事は有りません。 これは、過変調によるスプラッタ増大を防止する効果があるかも知れません。

デュアルゲートFETを使用したリミッターアンプを付けていましたが、このFETアンプのリップルリジェクション能力がほとんどなく、変調音に電源のリップルや、送信したRF信号が電源ラインに乗り、ノイズとして聞こえます。 よって、このFETによるリミッターアンプは廃止する事にしました。 とりあえずリミッター無しで進行し、その内にリミッターICでも追加する事にします。

修正した配線図 AMTX_9.pdfをダウンロード

F

最終的な変調器の周波数特性は左のようになりました。 -3dB幅は125Hz~3500Hzくらいです。

7MHz RFユニット へ続く

INDEXに戻る