AM送信機(デジタル方式) Feed

2022年10月23日 (日)

デジタル方式 AM送信機 動作確認

<カテゴリ AM送信機(デジタル方式) >

デジタル方式AM送信機の配線が終わりましたので、いよいよ動作確認です。

まずは、オーディオ部分から。 マイクを繋ぎ、普通にしゃべってみて、変調度計のバーグラフの動きをチェックしました。 これが、さっぱりで、まともに動作しません。 

Meterdrive_c

ピークホールド機能をマイコンのソフトでやったのですが、このソフトの出来が悪く、思ったような動作をしません。 結局、左の回路図に示す通り、OP-AMPを追加する大幅改造になってしまいました。 ピークホールド機能は、ハードで構成し、マイコンは単純に出てきたDC信号をAD変換するだけにしたら、うまくいきました。

 

37decoder

電力合成回路のマイコンによるデコーダーの動作確認をしている時、間違って、RA1端子に12Vの電圧をかけてしまい、このI/Oが壊れました。 やむなく、今まで、RA0,RA1,RA2の3bitでデコードしていたものを、RA2,RA3,RA4の3bitへ変更し、PORTAを読み取った後、右へ2bitシフトして、解決しました。 12Vを間違って印加したのは、7pinのコネクタが二つあり、これを間違ってしまったもので、今後同じような事故が起こらないように、CNP13を7pinから6pinに変更しました。

3r3vreg

次に、RFパワーアンプへの信号接続と、電源供給をチェックです。信号系統は、一応設計通りデコードされた7MHzのキャリアが供給されるようになっていましたが、12Vの電源を接続すると、焦げ臭いにおいがして、煙がでます。 発煙箇所は3.3Vの安定化電源。 スペックを調べてみたら、最大入力電圧は6Vとの事で、ここに12Vを加えた為でした。 やむなく、3.3Vの3端子レギュレーターの前に5V1Aの3端子レギュレーターを追加して、対応しました。 すでに2石のICを壊していますので、手持ちのIC在庫が気になります。

10月の最後の日曜日。 電力合成回路がうまくいきません。 ステップ出力はなんとか理屈通りでるのですが、パワーが全然足りない。 消費電流が2A近くあるのに、0.1Wも出ない。

この原因を調べていましたら、RFパワーアンプの出力の歪が影響している事がわかりました。

Dampout_2

Ts930out_2

左上が、今回のパワーアンプ10W で出力した7MHzのキャリアをトロイダルコアを使ったトランスを通して2次側で見た波形です。 右上はTS930より同じく10Wを出力して、同じトランスを介して見た2次側の波形です。 このようにパワーアンプの出力に歪が多いと、2次側で第3高調波が増大し、肝心の基本波レベルがダウンして、電力合成後のスペクトルが分散されるためのようです。 

特定のパワーアンプが何回も煙を出して、FETが死んでしまう原因が判りました。 プッシュプルアンプの2石のFETを同時にONする、いわゆる、貫通現象が発生しているのが原因でした。 終段のゲートをクランプ回路で構成した事により、2石のFETが同時にONする可能性が大きくなり、その状態でドライバー段の出力波形がバイアス電流の調整の仕方で変った時、貫通電流が発生し、この原因を取り除かないまま、壊れたFETのみを交換する為、何度も煙を出して壊れるというのが真相でした。対策として、デッドタイム制御回路が必要になるかも。

7195KHzで送信状態にして、受信機でこのキャリアを受信しようとしますが、ハムバンドの中を探しても、キャリアが見つかりません。 送信波形をオシロでモニターして7MHz付近にある事は間違いありませんので、周波数カウンターを接続してみると、なんと6935KHz付近なっているではありませんか。 どこかでPLLの計算を間違ったみたいです。 さらに、オシロで波形を見ながら、パワーアンプの出力ラインに指が触れると、周波数が低い方へ動きます。 また、パワーアンプ基板のGNDをシャーシに接触させても、周波数が動きます。

かくして、簡単なアンプで済まそうと作成した12台のアンプは、その出力が正弦波より大きく歪、計算通りの電力合成が出来ないという事が判り、12台のパワーアンプは再検討せざるを得なくなりました。 また、PLL VFOも不安定で、これも改善が必要です。

しばらくこのプロジェクトは休止します。

 

 

INDEXに戻る

2022年10月10日 (月)

デジタル方式 AM送信機の組み立て

<カテゴリ AM送信機(デジタル方式) >

主な回路ブロックが出来上がってきましたので、いよいよ組み立てに入ります。

Rfdac_front

Rfdac_back

Rfdac_left

Rfdac_right

7mhzbpf_2

C4080rev_001bk_3

左上は、50MHz LPFから改造した7MHz BPFです。 右上は、その特性をネットワークアナライザーで測定したデータになります。 第2高調波帯については、7次LPFと同等ですが、3次以上の高調波に対しては、7次LPF以上の減衰を確保しております。 低調波領域では、急激な減衰は期待できませんが、RFADCのサンプリング周波数500KHzがどのように影響するかはまだ分かりません。

7mhz_backpannel

上の画像は、BPFと出力レベル検出回路、同軸リレー、アンテナ端子と、受信機へのアンテナ入力端子をまとめたものです。

7mhz_pwr_mix_top

デコーダーから、12台のRFアンプへの配線が完了し、そして、12台のアンプから電力合成回路への配線も完了しました。 やっと完成です。 ここまで、2週間かかりました。

Rfdac_tx_comb

ベースになっているシャーシーはTS-700ですが、なんとかこのサイズに収まりました。

  

デジタル方式 AM送信機 動作確認 へ続く

 

INDEXに戻る

2022年10月 1日 (土)

RF DA変換回路(高周波デジタルアナログ変換)& 出力合成回路

<カテゴリ AM送信機(デジタル方式) >

dsPICを使ったAD変換と、プリディストーション機能付きの回路が出来上がりましたので、次は、8bitのデジタル信号を7MHzのキャリア信号に変え、この8bitの7MHzキャリア信号を高周波のままデジタルアナログ変換を行います。 

今回のパワーアンプの基準出力は1台当たり、15Wに設定しましたので、ピーク出力は計算上は約109Wですが、ロスがありますので、目標ピーク100Wとして、 キャリア出力はその1/4の25Wとします。

構成としては、LSB側のアンプをバイナリ駆動する5台のアンプと、MSB側の3bitをデコードして、駆動する7台のアンプ、合計12台のアンプの出力を、直列電力合成を行い、この合成の過程でDA変換を実現します。 電力合成回路に残る浮遊リアクタンスを直列共振回路でキャンセルした後、7MHzのBPFを通して、アンテナへ出力させます。

デジタル回路の基本としては、8bitの信号をDA変換する為には、重みづけした電力増幅器が8台あれば良いのですが、その場合、最上位ビットの出力は、最大ピーク電力の1/2必要です。 今回、作成しているAM送信機の最大出力はピーク時100Wであり、最上位ビットは50W必要です。 50Wなら簡単に1台のアンプで実現できますが、放送局の場合、最大ピーク電力200KWとかという数値になりますので、その1/2の出力でも、半導体によるアンプでは実現不可能であり、100Wから200Wくらいのアンプを沢山同時ドライブして作る必要がある為、わざわざデコードして、数多くのアンプをドライブする事になります。 今回のAM送信機は、あえて、小電力のアンプを並べて、高周波のままデジタルアナログ変換を行う実験と、電力合成の時に発生する非直線性を改善するプリディストーション効果を確認する事をメインにしておりますので、コストパフォーマンスは甚だ悪い物になっております。 

このように、交信を行う目的だけなら、あまりメリットは無いのですが、すでに、複数のOMさんが、この方式でON AIRされており、その受信音は、PWM方式や、プレートスクリーン同時変調の音よりも、明らかに了解度が良く、その理由を確かめる事も一つの目的となって、製作を始めたものです。

 

配線図 RFADC_AMPx12.pdfをダウンロード

8bitencorder

左は、dsPICからの8bitデジタル信号(オーディオ)をLSB側のバイナリー駆動回路で、5bitの7MHzのキャリア信号に変える回路と、MSB側、3bitのデコーダーです。 このデコード機能は、標準ロジックICのなかでは、見つける事が出来ませんでしたので、ジャンク箱に眠ていた、古い初期のPICを使い、ソフトで必要な7chのデコードを行っています。

今では標準となっている内蔵のCR発振回路は、初期のPICには内蔵されていなく、外部発振回路オンリーですので、手持ちのクリスタルを使い、最高周波数の20MHzで動作させ、デコードの時間遅れを最小にしようとしています。 7個のLEDはデコーダーのデバッグと、のちのち、RFアンプが接続された時のモニターとして使います。 ロジックICの74HC00は本来3個で良いのですが、トラブルが発生した時の為に、予備として1個追加してあります。 この予備は電源以外は接続はされておりません。

Msbdecorder

ひだりの真理値表は、このPICが3bitのデータをどのように変換するかを示したものです。

ソフト的には、非常に簡単で、この変換を高速で繰り返す以外、何もしないマイコンになっております。

これらのドライブ信号により、以前、完成した12台のパワーアンプを駆動し、その出力を直列合成して、DA変換する回路が下の基板になります。 一応位相関係の動作チェックは完了しております。コアサイズが2種類ありますので、青色のコアはMSB側、黒色のコアはLSB側で使います。 理由は同じタイプのコアを12個確保出来なかった為で、他意は有りません。

Powrmix

バラックの状態で動作確認ができたら、次のステップとして、送信機としての組み立てに進む事にします。

 

 デジタル方式 AM送信機の組み立てへ続く

 

 

INDEXに戻る

2022年9月10日 (土)

デジタル方式 AM送信機の構想と製作

<カテゴリ AM送信機(デジタル方式) >

Rfdac_amtx_lcdRF電力合成器によるDAコンバーターの目途が立ち、必要な12台のRFアンプも完成しましたので、 今回製作するデジタル方式AM送信機の構想を紹介します。 まだ、構想レベルで具体的な製作にはかかれませんが、回路を少しづつ製作する上で、その機能の確認を行う為、まずは、PICマイコンによる制御回路の製作です。

左は、このAM送信機のLCD表示です。 送信機の機能を検討する上で、イメージを得る為に、表示のみ先に作成しました。 オリジナルは、以前作成した50MHz用AMトランシーバーのLCDですが、すでに本体は解体済みですので、この送信機で再利用する事にしました。 送信機の機能が固まるにつれ、表示も変更されますので、最終的には、異なった表示になると思われます。

以下にこの送信機の全体のブロックダイアグラムを示します。

Rfdac_amtx_block_2

WEB上で入手した情報によれば、短波帯のRF DACのリニアリティは、MW帯より悪化するとの事で、そのリニアリティの改善が肝になりそうです。 そこで、この送信機では、RF復調信号による負帰還(NFB)、または、プリディストーション機能などを検討する事にしており、その実現の手段が、今回の開発のメインになります。

まずは、7MHzのPLL VFOです。 このVFOも、以前の50MHz用VFOをそのまま周波数変更して実現しましたので、簡単に出来上がりました。 このPLL VFOは以前、7MHzのPWM送信機用に作り、パワーアンプの出力がPLL回路にフィードバックして、PLLがアンロックになった失敗作がベースになっており、再度、これを7MHzで使うには不安がありますが、シールドの強化や電源の分離などで、乗り越えようと考えております。 これに使用していますPICから、dsPICを制御する為のI/O設定がまだ、最終では有りませんが、一応、配線図も完成しました。

PLL VFO配線図 7MHz_PLL_VFO.pdfをダウンロード

I7mhz_pll_vfo_0

左の写真が、7MHz帯に改造したPLL VFOの基板です。 VFOのアナログ発振回路の周波数をオリジナルの25MHzから7MHzに変更したことと、DDSのAD9833の発振周波数を700KHz帯に変えただけで、ちゃんと、7MHzのPLL VFOとして動作しております。
周波数の可変スパンは100Hzと1KHzです。 AMオンリーですから、これで支障は無いと判断します。

出力は5Vppありますので、そのままRFパワーアンプへ供給可能です。

一方、音声信号をAD変換し、8bitのバイナリコードに変換した後、RFパワーアンプをドライブする為のデコーダー機能を別のPICマイコンで実現し、このdsPICの中でプリディストーションも実行する予定ですが、その具体的な手段はまだ有りません。 まずは、このdsPIC周辺のハード回路を組み上げ、信号を通しながら検討して行く事にします。

基板に回路を実装するにも、回路図が必要ですので、動作するかどうかも確認していませんが、とりあえず、回路図通り、基板を製作する事にします。

ADコンバーター周辺の回路図 RFADC_AMTX_audio.pdfをダウンロード

当初、テストやプリディトーションモードの設定を、VFO側のマイコンで行うと考えていましたが、DSP側とVFO側の通信がSPIを使って出来る見込みが立ちましたので、DSP側にモード設定機能を移し、VFO側は表示の為の結果をもらうだけにします。

dsPICのオーディオADCとDAC基板が出来ました。 まだ、作っただけで、動作チェックはしておりません。 これから、じっくり時間をかけて、ハードとソフトの検討を開始します。

Dsp_pcb_f

Dsp_pcb_b

3khzlpfdata

ADコンバーターの前で、3KHzのLPFをTX-88Dを真似て作ったのが左の特性です。 オーディオ帯域を3KHzまでほぼフラットにして、3KHz以上は急激に落とす特性ですが、やはりメーカー設計にはかないません。 メーカー設計と個人の趣味による設計の大きな差は、試作にどれだけお金をかけられるかの差でありまして、決して技術力の差ではありません。 アナログ回路のLPFはこの特性で一旦手を打ち、dsPICの中で余裕があればFIRフィルターで最終仕上げする事にします。

 
9月のシルバーウィークを利用して、ソフト開発に取り組んだところ、7MHz PLL VFOとdsPICによるAD変換した10bitのデジタル信号を8bitのRF DACをドライブする為の信号に変換するエンコーダーができあがりました。

このエンコーダーには、AM送信機のキャリアレベル調整機能、RFDACの非直線性(歪)を補正する為の、自動キャリブレーション機能などを組み込みました。

Rfadctxdisp2

左が、その機能を実装したLCD表示の一部です。 自動キャリブレーションした結果はフラッシュメモリーにセーブされ、電源ON時に読み出してプリディストーション機能が動作します。 このプリディストーション機能の精度は、入力されたアナログ信号の8bitデータに対して、RFアンプの出力誤差は、今のところ、+/-2カウントまでとしてありますが、実際にRFアンプをつなぎ、ダミー抵抗を負荷とした時の精度を+/-1カウントにすべく、12台の各出力レベルを調整する予定です。

これらを盛り込んだ、ふたつのソースが以下になります。

AMTX-PLL-VFO_7MHz.cをダウンロード

AMTX-ADC-DAC_decorder.cをダウンロード

dsPICのクロック部分を以前の記事で紹介したdsPIC33CHの設定にすると、発振回路は発振しているのに、Foscが生成されませんでした。 代わりに、dsPIC33FJの設定にすると、うまく動作しました。 dsPIC33FJとdsPIC33CHの生まれ故郷となる会社が異なるのが原因でしょうか?

通常の送信モードの時は、ADCが500KHzでサンプリングし、同じ500KHzのクロックでDA変換しますが、テストモードやオートキャリブレーションモードの時は、随時AD変換を行い、500KHzのサンプリイングを停止し、PICが計算を間違うのを防いでいます。

ここまで出来ると、次はいよいよ12台のパワーアンプとこのデコーダーの結合作業となります。

このAM送信機について、一番の心配毎は、高周波電力合成回路を、500KHzくらいのクロックでDAコンバーターを構成させる訳ですが、このクロック信号がどのくらいのスプリアスレベルになるか判らない事です。 結局このレベルは、AM送信機が完成しないと測定出来ませんので、最後の土壇場で、NGとならないように祈っています。

 

RF DA変換回路(高周波デジタルアナログ変換)& 出力合成回路 へ続く

INDEXに戻る

2022年8月15日 (月)

高効率E級アンプ再トライ

<カテゴリ AM送信機(デジタル方式) >

E級AMPを製作するつもりでしたが、出来上がったのはD級アンプでした。

実験中に次々とFETが死んでいくBS170 6石によるE級アンプを諦めて、せめて、効率が70%を切っても、壊れないPd 20WクラスのFETによる2石プッシュプル回路を検討する事にしました。

パーツBOXの中で見つけたのが2SK2925。 Pd=20WですがCiss=350PFとBS170x3より6倍近く大きく、もう74HC04ではドライブ出来ません。 そこで、7MHzの200W PWM機で使った、FETをタスキがけにして、振幅を2倍にする回路で実験しました。 しかし、たすき掛けに必要なのは、FETのゲートを完全にON出来る電圧であり、その電圧を確保しようとすると、終段のゲート入力インピーダンスが低い事もあり、結構大きなドライブ電力が必要です。 この電力は0.5Wくらいであり、小信号トランジスタではドライブしきれません。 実験の途中で、FETのたすき掛けを諦め、ダイオードクランプによるレベルシフトにより、ゲートをフル振幅でドライブする回路に変更しました。

10w_eclass_3_0

上の実装基板は、回路の基礎検討を行った時のもので、12Vの電源で、9Wの出力が得られ、効率も80%くらいになりましたので、 KiCADで作図した基板図をベースに1枚だけ基板を手作りしたのが、下の基板になります。 終段のFETのドレインは45mmx15mmの銅箔に張り付けて放熱板としてあります。 

10w_eclass_3_1

7mhz_amp_10w_test5

10w_eclass_3_2

上の回路がその全回路図です。 2SK2925のCossは190PF有り、この容量と両面基板の浮遊容量でE級アンプに必要な共振コンデンサは形成されていますので、C7,8は最終的には0PFとなりました。

左の波形がQ2,Q3のゲート電圧の波形となります。 ダイオードクランプのおかげで、約10Vppの電圧で、終段のFETをドライブできます。

当初、初段のBS170のVddを12Vに設定していたのですが、200mAくらい流さないと正常にドライブ出来ず、1分くらいの動作であえなく死んでしまいましたので、Vddを7Vまで下げ、200mA流すと、なんとかE級アンプとして動作するようになりました。 ただし、この状態でもPdcは1.4W有り、効率が50%としても700mWのPdですから、通常運用では壊れるのは時間の問題です。 このBS170をほかのFETに変更しようにも、Ciss=20PFというFETはこれ以外になく、放熱板なしで1.5Wくらいの実力のあるTRに変更するしかなさそうです。

そのTRをさがしている間に、ファイナルの効率を調べる事にします。

まず、C7,8が0PFと置いて、周波数を変えた時のデータです。 Vddは5Vです。

5v_eclass_3_0

目標の7200KHzで85%。最高94%が得られる周波数は7500KHzでした。  そこで、C7,8を47PFに変更してみたのが下のデータです。

5v_eclass_3_1

7400KHz付近で80%の最高効率となっており、ここは、C7,8ではなく、L1,2を変更しないとダメなようですが、あいにくL1,2は1uHの固定インダクタでいじれません。

次に実際に動作させるVdd=12Vで比較してみました。

12v_eclass_3_2

12Vの場合、C7,8は0PFの時が効率はいいみたいです。

終段に使った2SK2925は秋月で90円/石です。 もう少し安いのがないかと物色していると、MTA100N10KRI3というFETが25円/石で見つかりました。 ただし、Cissが425Pもありますので、今度は初段のドライブ能力が問題になりそうです。 そして、BS170の代替TRとともに、このFETを発注しましたので、入手出来たら、確かめる事にします。

8月19日 

手配していたトランジスターとFETが届きました。早速、組み換えです。 初段のトランジスターはTTC004BというPc=10W、ft=100MHzの東芝製です。 最初、入力トランス無しでトライしたのですが、ゲインがさっぱりでしたので、 18:6のトランスに変更したところ、Ic=40mAで終段のゲートを10Vppでドライブできるようになりました。 このときのDC入力は0.24Wで、効率1%でも放熱板なしで動作可能です。

終段のFETはケース温度100度のときPd=12WというMTA100N10Kですが、これも2SK2925より効率が良くなっています。

回路図は以下のようになりました。

New10w_amp_2

以下、トランジスターとFETを変更した検討時点での基板の表(SMD面)と裏(部品挿入面)です。

Newamp_fside

Newamp_bside

T3のコアはESD-R-10Eですが、18Tで148uHでした。 これは、同等のインダクタンスが得られる他のコアでも代用する事にします。 T1のコアは以前SWR計のCM結合器に使用されていたものですが、4Tで5.7uHのインダクタンスとなりましたのでアミドンの#43系と同等のコアと思われます。

そして、5Vと12V時の全体の出力と効率は以下のようになりました。

New_amp_data

12V電源でも86%の効率を確保でき、初段のトランジスターも終段のFETも指でずっと触っていられるくらいしか発熱しません。

次は、この回路を再度プリント基板図に落とし、量産前の最終確認を行います。

10w_amp_no1_pcb_2

10w_amp_input_2

10w_amp_q23gate_2

10w_amp_q23_drain

10w_amp_rfout

これらの波形は、左上が、この基板の入力コネクタの位置での7200KHz信号です。終段に12Vを加えていますので、リンギングが目立ちます。 右上は、Q1で増幅した後の、終段FETゲートドライブ信号で、終段のドレインには電源電圧がかかっていない状態です。 ちなみに、電源のDC12Vが印加されると、リンギングによりギザギザになります。 左下は、終段のドレイン電圧波形です。 E級アンプのつもりで製作してきましたが、動作はD級アンプで有る事が判りました。 右下は、この基板の出力となる50Ωダミー抵抗両端の波形です。 完全な正弦波ではありませんので、電力合成時に問題がでないか心配です。

そして、このNo.1 基板によるデータは以下のようになりました。

10w_amp_no1_data

最初に試作した回路より若干効率が落ちましたが、この状態で安定するかどうかは今後の台数確認にかかっております。

当初、プリント基板を外注しようと考えていましたが、ICを使用する必要が無くなった事から、12台、全部、手作り基板で行く事にし、たちまち、部品を確保済みの5台分を作成する事にします。 プリント基板の作成は、KiCADで4枚に面付したパターン図をインクジェットプリンターで印刷した後、これを両面テープで生基板に張り付け、最初にボール盤で穴あけを行い、次に外径線に沿って、カッターでケガキ線をいれます。 ケガキ線を表裏とも各20回くらい入れた後、自作のアルミベンダーに差し込み、折り曲げると、綺麗に折れます。 その後、パターンのエッジに1本のケガキ線を入れ、直径1mmくらいの棒状ビットを付けたルューターで、銅箔を削りテスターで完全に切り離された事を確認したら、最後に、直径1mmくらいの球状ビットでこの銅箔カット溝を広げれば出来上がりです。 両面基板の部品挿入面側の銅箔で部品の足がショートしないように、予め、6φくらいのドリルで銅箔を削っておけば楽勝です。

New_dclassamp_15a

5台のAMP Unitが完成しました。 そして、改めて、各unitを最大出力状態に調整した時のデータは以下のようになりました。

New_dclassamp_15data_2

実際に使う12V電源に於いては、出力が最大17.6W、最小14.4W、効率最大86%、最小効率79%です。 各Unitの出力は初段のバイアス電流で調整できますので、直列合成Unitとして使う時は、最小出力のUnitに合わせ込んで、動作させる事になります。

12v_pwr_mix_lsb

上の表は、4台のアンプをLSB側合成回路に使用した時のデータです。 計算値に対して、かなり少ない誤差で出力出来ており、もう微調整の範囲です。 ここまでできると、自信をもって残り7台のアンプを製作する事にします。

9月の上旬後半ですが、12台のアンプができあがりました。 途中でT2のコアが手配できず、ワンランク下のESD-R-19Eで代用しましたので、このサイズダウンしたコアを使ったアンプは効率も落ちました。 これらはLSB側の小電力用に使えば問題有りませんので、このまま進行します。

7mhz_damp_12sets

7mhz_damp_12sets_data

出来上がった12台のアンプとそのデータです。

この12台のアンプをRF DAコンバーターとしてAM送信機にまとめていく訳ですが、電力合成回路の製作を行う前に、アナログの音声をデジタルに変換する為に、dsPIC33FJを使った回路を製作必要です。 そして、このdsPICを制御し、送信機として必要な機能をPIC24Fのマイコンで実現すべく、その検討を開始します。

実際に電力合成回路を作成し、12台のアンプによる電力合成を行った結果、合成出力が極端に小さくなり、1Wも出ませんでした。
この原因はパワーアンプ単体の出力が歪んでおり、フェライトコアによるトランスの2次側で、基本波の大部分が第3高調波成分に変わる事のようです。 再検討が必要となりました。 

 

デジタル方式 AM送信機の構想と製作 へ続く
 


   

INDEXに戻る

2022年7月 9日 (土)

高周波直列電力合成(7.2MHz)

<カテゴリ AM送信機(デジタル方式) >

前回の記事のように、10WのE級アンプが出来たので、このアンプを2台用意し、電力合成の実験を行います。 インターネットで電力合成を検索すると、並列電力合成の記事は沢山みつかるのですが、直列合成に関しては、言葉そのものは見つかりますが、その内容を解説した記事を見つける事は出来ませんでした。

特性のそろったE級アンプを2台作成し、その二つの出力を直列に接続して、実験開始です。

Eamptestschema3

パワーアンプ部は、74HC04のFETドライバーと3次LPFを実装させます。 これをカッターとリュウターで削り出した基板に実装し、下記のような2枚の基板が出来上がりました。

2eamppwb

2eamplpfin

2eamplpfout

上の波形は、2台のAMPを独立した負荷に接続し、両アンプを同相でドライブした時の、負荷抵抗のレベルと位相を見たものです。 下のアンプが少しだけ、位相が進んでいますが、おおまかな動作を見るには支障は無いものと考えます。

ふたつのアンプのそれぞれの性能は以下のようになりました。 ゲートドライバーの74HC04を3回路パラにしたので、効率もかなり改善しました。

Eamp2per729pf

Pwraddtest5v

左が、Vddを5Vにして、電力合成の結果を見たものです。 上の2行は各AMP単体の5Vでのデータとなります。 合成はLPFの出力を2台シリーズに接続し、10:7のトランスで合計100Ωのインピーダンスを50Ωに変換した後、ダミー抵抗に繋いでいます。

その結果をみていると、少し違和感があります。

まず、個々に測定した出力は、合計して、3.78Wですが、2台を同時駆動して得られた出力は4.84Wと、計算から28%も高くなっています。 しかし、いいかげんなインピーダンス変換トランスでしたので、その誤差かもしれないと、納得して、次のデータを見ます。 この次のデータは、二つの基板に電源を通電したまま、一方のアンプのゲートドライブをONさせたものです。 その時の出力は1Wと0.9W。平均して0.95Wという事は、単独の時の半分のパワーしか有りません。 どうも、片方のアンプだけの場合、負荷抵抗と、動作していないパワーアンプのアンプ側へ出力が分散されるようです。 直列合成の場合、動作停止中のアンプは、負荷抵抗と同じ働きをし、結果的に、ダミー抵抗側へ伝送される電力は1/4になるのかも知れません。

その下のデータはゲートドライブはONしたまま、終段の電源をON/OFFしたものです。 電源の入力端子をオープンにした時と、ショートした時のデータを示します。 この場合も同じように動作していないアンプは負荷抵抗になってしまうのでしょう。 電力合成を直列方式で行う場合は、合成の各電力が一定の場合、その整合もやりようがありますが、複数のアンプがON/OFFを無秩序に繰り返す場合、何か特別な手当てをしているのかも知れません。

Pwraddtest5vlpfin

二つのアンプ間の位相差が悪さをしているのでは?と、各アンプのLPF出力端より位相差が少ない、LPF前の出力トランスの2次側をいきなり直列に接続し、得たデータが左の表です。 この表で大きく前回と異なるのは、出力が単体の時の半分になってしまい、2台合成時の出力と、単体の時の出力と変わらない事。 それに、ゲートドライバーでON/OFFした時も電源をON/OFFした時でも、出力差は大差なく、2台合成出力の約28%から25%くらいしかない事です。 結局、出力OFF時の出力インピーダンスを解決しない限り、直列合成はあり得ないと思われます。 

電力合成時、複数のアンプが任意にON/OFFを繰り返すような場合、出力インピーダンスの変化は避けられず、この出力インピーダンスの影響が、アンプの動作条件に即影響する、E級アンプそのものが不適当ではないかと考え、なにか情報がないか探すと、放送機に於けるD級とE級アンプの比較レポートが見つかりました。 このレポートでは負荷変動についての評価は有りませんが、D級アンプが有利との結論になっています。 レポートの中で、D級アンプは電源電圧に対する出力のリニアリティがE級より劣るとありますが、デジタル方式のAM変調なら、その欠点は全く問題になりません。 また、NHKがレポートしているデジタル方式のAM送信機も、個々のアンプはD級とありました。 ただし、これらの検討している周波数帯は1.6MHz以下の世界であり、目標とする7MHz帯では、やはりE級アンプに軍配が上がりそうです。

そして、直列電力合成に関する文献を見つける事が出来ました。 この記事は2006年に発表されたもので、5MHz時の最大効率が90%程度を示すD級アンプの計算値がグラフデータの中にあります。 現在は7MHzで、90%台を出せるE級アンプを素人でも作る事ができますので、E級アンプの方が効率はよさそうです。 直列電力合成のヒントも判りましたので、E級アンプによる直列電力合成に再トライする事にします。 

以下のように二つのAMPを接続し、T21とT22の巻き数比とRLの抵抗値を変えながらデータを取る事にします。 T21,T22の1次側巻き数は13ターン。 使用したフェライトコアは、秋月で入手したTR-20-10-5EDです。

Pwrmix1_cshma

Pwrmix0


まず、ふたつのアンプに13:4の巻き数比(Zout=50x(4/13)2乗=4.7Ω)のトランスを接続し、単独に動作させた時のデータです。

次に、このふたつのAMPの出力を直列に接続し、両AMPを動作させ、9.4ΩのRLに接続しますが、そのとき、TC21とL21で直列共振させます。 さらに、片方ずつドライブし取得したデータです。 同様にしてT21,22の2次側の巻き数を3→2と変化させ、RLもそれに応じて変更した時のデータとなります。 各表の一番右側にある電圧比は、両AMP同時駆動時の出力電圧(電力ではありません)を100%とした時、片方だけドライブした時の出力電圧の比です。

これは、50%が理想で、試作回路にバラツキがありますが、おおむね、50%となっています。 T21,22の巻き数比を、AMPの総台数の平方根対1に設定すると、2次側の総インピーダンスが50Ωになり、都合がよさそうです。 AMPは、同一出力のMSB側と、バイナリー出力のLSB側に分かれますが、LSB側は全部合わせても1/3程度のインピーダンスですので、合成する時のインピーダンスの総数はMSB側の全台数+0.33程度になると考えられます。 これは、実際にアンプの割り振りが決まった時点で、詳細を決める必要が有りそうです。

当初、AMPを2台作成し、データを取り、良好なら、プリント基板を起こし、量産する予定でしたが、現状では、今検討中の回路で完成するか確信が持てませんので、さらに2台の基板を追加する事にします。

Eamp4sets

Eamplpf400_2

4台のE級アンプが完成しました。 上が共通の回路図となります。 個々のアンプで、出力のバラツキがありますが、出力段のLPFのインダクターを伸ばしたり、縮めたりして、出力を調整する事が出来ます。 この4台を使い、電力合成の実験を継続する事にします。

Pwrmix_4_schema

左が電力合成回路のブロック図です。

合成トランスT1からT4の巻き数比はMSB側のシュミレーションとLSB側のシュミレーションでは異なります。

MSB側のシュミレーション時は4台のAMPとも合成トランスの巻き数比は8:4で、4台の直列インピーダンスは合計して50Ωになるように設定します。

LSB側のシュミレーションでは、バイナリー出力となるように、8:4、8:2、8:1、16:1とそれぞれ電圧が半分になるように設定します。 この場合、合計のインピーダンスは50Ωになりませんが、シュミレーションですから、問題有りません。

Pwrmix_4set

最初の表は、4台のアンプの出力が一定になるように、LPFのコイルを調整し、各々、単独負荷で、測定したデータです。 NO.1と2のアンプは、作成した初期の状態では85%の効率でしたが、今回改めて測定すると、かなり悪くなっています。 原因はまだつかめていません。 しかし、出力レベルは4台とも1.56Wに揃えました。

次の真ん中の表は、MSB側のシュミレーションで、すべて、同じ出力状態で、4台同時ドライブ、3台同時、2台同時、そして1台だけドライブしたときのデータです。計算値と書いた数値が4台同時ドライブの電圧レベルを100%とした時の、計算上の電圧比で、電圧比と書かれた列の数値が実際に得られた電圧比になります。 この結果は、かなり低い値になって、リニアリティが確保できない事を表していますが、トランスの巻き数比は変えられませんが、巻き数は変える事ができますので、実際に製作する時はカットアンドトライする事にします。

一番下の表は、LSB側をシュミレーションしたもので、電圧比は計算値にかなり近い値を示します。 これは、最終的に、個々のアンプの出力レベルを微調する事で改善できます。

この合成トランスの2次側に直列共振回路を入れて、合成トランスが持つ浮遊容量や浮遊インダクタンスをキャンセルさせていますが、この共振回路のQと出力レベルは無関係で有る事を確認できましたので、最終的に送信機にまとめる時、バリコンの耐圧が許容可能な限り大きなQに設定し、スプリアスの抑制にも使う事にします。 

下が、この実験中の風景です。

Pwrmix_test_0

ここまで出来ましたので、次は、基板を8枚にして、AM送信機の予備検討をしようとして、新たに、4枚の基板の手作りを始めました。 そして、先行の1台が出来ましたので、動作テストをすると、パワーは出るのですが、効率が50%台しか出ません。 前回作成のNo.3と4の基板では80%台を出していましたので、 その原因が判りません。 Vddを5Vと12Vと交互に変化させながら、原因を検討していたところ、ゲートドライブなしの状態でIdが1mAとか2mAなど流れるようになってしまいました。 これは、明らかにFETの劣化です。 5台の試作基板で、効率が大幅に異なることと、FETの劣化というトラブルにより、この10Wアンプは安定性と信頼性が疑問になって来ました。 

そして、FETを外して単品の導通テストを行うと、約半数のFETがドレン-ソース間のON時の抵抗が増大しており、これが効率を悪くしている原因のようです。 かくして、BS170によるE級アンプは失敗に終わりました。

AMの場合、無変調時でも、10Wアンプはフルパワーを連続して出す必要がありますので、10Wクラスの連続動作可能な高効率アンプを再検討する必要がありそうです。

 

高効率E級アンプ再トライ  へ続く。

 

INDEXに戻る

2022年6月25日 (土)

E級高効率RFアンプの実験

<カテゴリ AM送信機(デジタル方式) >

7MHzで10Wくらいの安いアンプを作ろうとしています。 目標は、効率80%以上のE級アンプです。 首尾よく、試作に成功したら、これを十数台作り、電力合成して、AM送信機に仕上げる魂胆です。 

参考にしたのは、E級アンプの実践的なレポートのある、JK1LSE OM のブログです。

まずは、効率90%のE級アンプへの挑戦です。 これが意外と難しい。なかなか90%の大台が出ません。 とりあえず、80%台がでましたので、ここで一区切りし、次のstepへ進む事にしますが、以下そこまでの経過です。

Eclassamptest_0

上の回路図が今回検討開始に当たり、設定した配線図になります。 終段はBS170の2石パラレル、プッシュプル(2x2)形式で、E級アンプを構成させます。 そのドライブ回路は、FETゲートドライバーのMCP1402Tで、電源電圧を12Vにして、BS170をフルスィングします。 その前に、CMOSゲートによりデッドタイム生成を行い、ファイナルのプッシュプル回路のFETが同時にON する事を防止します。 さらにその前段にDCバイアスを調整して、7MHzの矩形波のデューティ比を調整できるようにしてあります。 7MHzの源信号は、以前作成したDDSから4.5Vppでドライブします。

Pa_pp_mcp1402t

左は、そのゲートどライブ回路を蛇の目基板に実装したところです。 VDD5Vにて、70%台の効率を出せるのですが、このゲートドライバーのMCP1402Tがかなり熱くなります。 コアや巻き数を変更しながら、電源電圧も5V、10V、12Vと変化させているうちにICが壊れてしまいました。 とりあえず、ICは4個購入してありましたので、修理交換して、各定数の最適値を探して、80%台の効率が得られる状態になりましたので、12Vで1分くらい動作させた結果、今度はBS170、4石を道連れにこのゲートドライバーも壊れてしまいました。 データシートを見る限り、電源電圧12Vは全く問題ないはずですが、ファイナルの電源電圧を12Vにすると、たちまち壊れてしまいます。 原因を調べようにも、すでに手持ちのICは全滅。 やむなく、手持ちのTC4426に改造して、再検討開始です。

Eclassamptest11

ただし、TC4426を以前RSで買った時は90円でしたが、現在は246円以上していますので、もっと安いICへ置き換えが必要です。 置き換え品は後で探す事にして、実際に組みあがった回路は以下のようになりました。3枚の写真の間はリード線や同軸ケーブルでつながれています。

Pa_pp0

Pa_pp_gate

Pa_pp_drain

Pa_pp_drainrfout

上の波形は左から、ゲート端子の電圧(10V/DIV)、ドレイン電圧(20V/DIV)、ドレンイン電圧とフィルター後の出力波形(20V/DIV)です。

見ての通り、ドレイン電圧が同じ形をしていません。 回路を非対称に作った事が影響しているかもしれません。 このような波形ですが、実測データは下のようになりました。

Pa_pptestdata_2

VDD 5V、12Vいずれの状態でも80%台の効率は確保できましたが、12V電源の場合、FET1石にかかるPdは、2x3の場合で、0.446Wとなりました。 これは、データシートから割り出した筐体内温度60度の許容値0.599Wの74%で実用レベルです。 ちなみに、2x2の場合、1石当たり0.669Wとなり、これは許容値ギリギリで、余裕が有りませんので、交信中に壊れる確率が高いです。 2x2の構成で放熱板を追加するより、FETを2石増やして2x3にした方が安くつきそうです。

Eamp_test_final

このアンプを8bitのDAコンバーター用に使うと、最低12台、欲を出して、bit数を10bitまで上げると最低21台作る必要があり、大きなフェライトコアを使った現状アンプでは、フェライトコアの材料代だけで、600円くらいしますので、21台作ろうとしたら、12,000円くらいになってしまいます。 そこで、コストダウンの為に、L1を手持ちのチョークコイル(100個くらい在庫)に変更し、T2のコアも、一回り小さなフェライトコアに変える実験を行いました。 左がその写真です。

出力トランスに使うフェライトコアをESD-R-22SDに変えると、150円くらいで手にいりますので、21台分で、3000円と少しで実現できます。 そして、検討の結果、効率は89%まで向上し、コストダウン出来た上、効率も上げる事ができました。

Eamp_test_final

1uHの空芯コイルは基板から10cm以上離れた場所で約1uHでしたが、写真のように基板に密着させた状態では0.89uHしかありませんでした。 そこで、L3とL4を0.5uHにした時のデータを取ってみました。

Eclassamptest_2

VDD5Vの時は91%の効率となりましたが、12Vの時は73%まで悪化しています。 やはり、L3,L4は1uH前後でないとダメ見たいです。 

そこで、1uHのアキシャルインダクタに変更してみました。 このインダクタの特徴は小型であることと、そこそこのQが確保できる事です。 秋月で1本7円で販売されていました。

Eclassamptest_3_3

7200KHzに周波数を固定して、C14と15を変化させた時のデータです。 5Vの電源では、91%の効率をあげる条件がありますが、同じ条件で、12Vにすると、70%くらいまで落ちてしまいます。 表の中で、色分けした条件なら、なんとか80%をキープします。 80%でも、Pdは余裕がありますので、あまり欲張らない方が良いかも知れません。

今までの実験経過から、部品のレイアウトを整然と行い、リンギングの発生を抑える事が、安定に高効率を得る条件のようですので、ゲートドライブ用のICが確保で得来た時点で基板を作り替えてみる事になりそうです。

ゲートドライバーのICと変換基板を手配できましたので、さっそく実装してみました。 ところが、ICの仕様を読み間違えたようで、入力レベルが5V以上必要なICでした。 また、TC4426を使って、Vddを12Vまで上げると、異常信号でAM変調されます。 出力段の信号がTC4426の入力にフィードバックされているような波形で、Vddを下げると、小さくはなりますが、ゼロにはなりません。 そこで、このゲートドライバーは止めて、74HC04のみでFETのゲートをドライブしてみました。 すると、異常信号によるAM成分は消えてきれいになり、かつTC4426の時より出力が出るようになりました。 以降、74HC04のみで進行する事にします。

配線図は以下です。

Eclassamptest12

Eclassamptest3

Eamp_axi1uh

上の表は、74HC04オンリーで、1uHのアキシャルインダクターを使用した時のデータです。

Vdd=12VでC14,15が709PFのとき、79%の効率で11Wを出力し、Vdd=5Vの時の効率が81%です。 12Vと5Vの時の効率があまり変わらないという事は、このアンプを10数台電力合成した時の個々の出力を、Vddを変える事により簡単に直線的に変更できることになりますので、便利です。 左の写真は、アキシャルコイル実装状態で、基板の中がかなりすっきりとなりました。

  

 

従来、プリント基板の作図を行う場合、プロ用のソフトを使っていましたが、このプロ用のソフトはWindows XP用で、それ以降のOSでは、ライセンスの関係で動かないという問題がありました。 XPがインストールされたデスクトップのPCとHD仕様のディスプレーは有るのですが、この古いPCを引っ張り出しても、狭い机が、いっそう使いにくくなりますので、最新の無償のソフトを探す事にしました。 そして、見つかったのが、KiCADという、私が以前使っていたプロ用のソフトと似たようなアプリが今、世界中で利用されている事を知りました。

さっそく、このソフトをインストールして、このE級アンプの基板の作図を始めました。 初めてのソフトでも、インターネットで検索すれば、たちまち、操作方法のアドバイスがあり、約5日間で、配線図、基板図用の、オリジナルのシンボルやフットパターンを追加しながら、基板図ができあがりましたので、できた基板図の通りカッターとリューターで銅箔をはがし、1枚だけ基板を試作しました。 下が、KiCADで作図した基板図です。

Kicad_new_pcb_0

Eamp_on_new_pcb_0


 左は、上の基板図の表面のみカッターで銅箔を削り、手作りした両面基板に部品を実装したところです。 FETとコイルとコネクター以外の抵抗、コンデンサは1608のチップで作りましたので、見た目は、かなりすっきり仕上がりました。

作図した基板には、FETゲートドライバの74HC04のパターンも用意してありましたが、今までの手作り基板と兼用する為、ゲートドライバーは、別基板に実装し、この新作基板は、BS170によるファイナル部分だけを実装しました。 いままでの回路と異なるところは、プッシュプル回路の配置が対称になったことです。 そして、12Vで測定したデータは以下のようになりました。 共振用コンデンサは707Pがよさそうです。 出力は11Wを超え、かつ1石当たりのPdも許容値内ですので、これをベースに量産する事にします。 このコンデンサの容量組み合わせは330P+330P+47Pです。 全てCH特性のチップコンデンサです。

Newpcb_eamp_0

この表の中にある842Pの状態で、エージングをしていると、約10分でFETが3石すべてがオープン状態で壊れてしまいました。 壊れた直後のFETの温度は、触れないくらい熱くなっていました。 1石当たりのPdは許容値内ですが、この数値は6石のFETにPdが均等に割り振られたもので、実際のPdは最小と最大で2倍くらいまでバラツクと想定されます。  この時の最大Pdは0.612Wくらいと予想され、60度の限界値0.599Wを超え、この為、1石がNGとなると、残りの2石で全体のPdをカバーする事になり、次々と壊れたものと思われます。 プッシュプルのもう一方の3石は無傷でした。

そこで、最初実験したデッドタイムコントロール機能を再度追加し、出力と効率を制御する事にしました。

デッドタイムコントロール回路を追加した回路図を下に示します。

Schema_add_dedtime

Dt_gate

Dt_drain

Dt_lpfout

左上から、終段のゲート電圧、終段のドレイン電圧、そして、LPFの出力の波形です。 基板のシンメトリ性が功をはくし、ドレインの波形も大幅に改善しました。 そして、デッドタイムを色々調整した結果、以下のデータとなりました。

Add_dedtime

黄色の状態でエージングを実施し、1時間OKでした。

今回の回路構成は、10台以上のアンプを直列に接続して、電力合成する必要がある為、出力整合回路と、出力設定機能を兼ねる為に、巻き数の多い絶縁トランスを採用しています。 この構成のE級プッシュプル回路の例が見つからず、製作中のアンプがほんとうに正しいのか判りません。

このE級プッシュプル回路の構成は、この記事の没頭で紹介した、JK1LSE OM のブログや周波数が異なりますが、トラ技の記事とも異なります。 多分、それが影響しているとは思いますが、C14,15とL3,L4の共振周波数の関係がこれらふたつの記事と一致しません。 ちなみに、L3,L4,L1の交点から、0.1uFでGNDへ落すと、C14とL4及びC15とL3の共振周波数は、7.2MHzより少し高い周波数の時、効率最大となりますが、効率そのものは最大でも80%でした。

Combtrans1by2

左は、コンベンショナルトランスを使った時の出力データです。 トランスの巻き数は2:4ですので、プッシュプル回路の負荷インピーダンスは12.5Ωになります。 そして、70%台の効率です。 この効率は、LPFの後で計算した場合、だいたい、どのインターネット記事も似たような数値で、一応世間並みの動作はしているようです。 この回路は、今までの回路に比べて出力は小さいですが、結構安定して動作し、出力波形もかなり綺麗です。 ただし、これを採用するかどうかは、電力合成の実験で決める事になりそうです。

今回のAM送信機は大小の出力を電力合成をするのですが、その合成のノウハウは公表されておらず、自分で実験しながら、試行錯誤するしかないようです。

高周波直列電力合成(7.2MHz)  へ続く。

INDEXに戻る