2023年1月21日 (土)

デジタル方式 AM送信機 再構築

<カテゴリ AM送信機(デジタル方式) >

変調波形は、見るも無残な状態ですが、曲がりなりにもRFDAコンバーターが機能し、一応AM変調がかけられる状態になりましたので、これの完成度を上げていく事にします。

まず、変調をかけると発生する、パルス状のノイズですが、3-8エンコーダーをマイコンで行った事により、エンコーダーの処理タイミングが遅れてしまい、LSB側のbitとのタイミングがそろわず、プラス側やマイナス側にノイズを発生させているようです。 3-8エンコーダーの動作を故意に遅延させると、このパルスノイズの幅が広くなります。 かくして、マイコンによるエンコーダーは使用できない事が判りましたので、PICによる3-8エンコーダーをやめて、下の配線図のように、6,7,8bitの信号で直接1台、2台、4台のアンプをパラドライブする事にしました。

567bit_directdrive

Predisted15w

そして、その状態での変調波形が左になります。 かなり改善されましたが、まだパルスノイズが残っています。3-8エンコーダーなしで、MSB側の時間遅れはありませんが、よくよく観察すると、4台パラのアンプを同時にON/OFFする時の電源負荷に対するショックで負のパルスノイズを含むノイズが発生しているようです。 やはり、当初考えていた、3bitの数値により1台づつアンプを増減させるエンコーダーをリアルタイムで動作させる必要がありそうです。 このリアルタイムエンコーダーは74HC08と74HC32各1石があれば実現できますので、手持ちの無い74HC32を秋月に注文して、納品待ちとなりました。

一方、12台のアンプの品質が悪く、1台づつ完成品テストを行い、これをシャーシに組み込むと、動作しなくなるアンプが続出しました。 12台の内、1台がNGとなったので、それを取り外しますが、外す時、邪魔になる関係ないアンプのコネクターも抜く事があります。 修理して、取り付け完了すると、今度は別のアンプが壊れており、また、修理するという繰り返しが3日間くらい続きました。 原因は、チップ部品のクラックです。 1608のセラミックコンデンサはルーペで見ても異常は判らないのですが、症状から怪しそうなチップコンデンサにパラに別のコンデンサを付けてやると直りますので、クラックしているのが判ります。 3216タイプの大型チップ抵抗も真っ二つに割れています。 これらの原因は、コネクターを挿入する時に基板がたわみ、そのたわみに耐え切れず、チップ部品がクラックする事が判りました。 今回、製作した基板は公称1mm厚のガラエポ基板でしたが、ノギスで測ると0.9mmくらいしか有りません。この基板の薄さが最大の原因のようです。 そして、抵抗がクラックするのは、抵抗が基板に密着せず、橋のように浮いた状態で半田付けされている事、チップコンデンサは、のきなみノーブランド品が特に弱いようです。 この修理が頻繁に起こり出してから、交換するコンデンサを全部、村田S/S製にしたら、やっとこの問題が落ち着きました。 今後、チップ部品を多用する基板は1.6mm厚に限る事にします。

送信状態からSEND SWを Stand-by にしても、消費電流が2Aを切りません。 電源ONした直後の消費電流は0.3Aくらいですので、元に戻らない事になります。 そして、ひとつの基板から、煙が上がります。 焼けているのは、ドライバーのFETです。 中には、表面に穴が開いているのも有ります。 原因は、Stand-by になったら7MHzのキャリアをOFFにする回路が動作したりしなかったりして、ドライバーに異常信号を供給しているものでした。 対策として、この付近のハンダ付けを全部やり直したら直りました。この問題の為、BS170や2N7000のFET約30石が壊れました。

今回の新しいパワーアンプは、計算上は、8bit DACの出力が255のとき84Wくらい出る事になっていますが、45Wしか出ません。 その原因はこれから、解析しますが、犯人は、電源ラインのフィルターや7MHzのBPFなどが考えられます。 これらも改善課題となりました。 とりあえず、今は無変調時のキャリア出力を12Wまで落とし実験を続ける事にします。

プリディストーション機能がうまく働きません。  前述のパルスノイズが残る変調波形は、一応プリディストーションを掛けたものですが、プリディストーションを掛けないときより、波形が歪んでいます。 これも改善課題です。

  

最大出力が45Wしかない原因が判りました。 出力レベルで電力合成トランスの残留リアクタンスが変化するようです。 初期のころは、アンプが破壊するのを恐れて、DACのデータが127くらいの時、出力最大になるようにリアクタンスキャンセル回路のバリコンを調整していましたが、これを255レベルのとき最大出力になるように調整すると、60Wまで出ることが判りました。 この時の単体アンプの平均出力は12Wくらいで7台がロス無しで合成された場合、最大84Wくらいになりますが、終段のBPFで約7%、電源ラインのフィルターで約9%ロスが有りました。しかし、計算上は71Wくらいは出る事になりますが、実態は60Wですので、この差が電力合成トランス内でのロスだろうと考えられます。 出力配分の小さなアンプは出力配分の大きなアンプから見たら負荷と同じように働き、トランスを経由して、小さい出力のパワーアンプ側へ逆流していますので、これがロスとなるようです。

Predisted10w

自動キャリブレーションのソフトバグを修正し、最大出力が60W出る状態でプリディストーションの校正を行います。 まず、テストモードにして、DACの出力値が128になるようにしておき、その時のRF出力レベルによりADC値が128付近になるようにVR8を調整しておきます。 次に自動キャリブレーションモードにして、結果がOKになるのを待ちます。 左は、このプリディストーションをかけた状態での630Hzで変調した波形になります。無変調時のキャリア出力はVR1を調整して15Wにして有ります。

正弦波の歪がかなり改善しました。 ただし、パルス状のノイズはまだ残っています。 この状態で実際に音楽を変調し、TS-850でモニターすると、音楽自身にはほとんど歪感は有りませんが、パルス状のノイズがザラザラと言った感じで耳に付きます。

次は、このノイズの対策です。

 

New38encoder

New38encoder_2

手配していた74HC32が到着しましたので、上の回路図の通り、改造しました。 しかし、聴感上のノイズは若干減少したものの、オシロ上では、ほとんど変化なしで、左の画像のように相変わらず出ております。

改造前より、波形的には、こちらの方が多いですが、聴感上は改造前より小さく聞こえます。 原因を調べて対策するのに時間がかかりそうです。  

 

 

Img_7773

左は、630Hzによる変調波形をデジタルオシロで見たもので、アナログオシロより、リアルに波形を表示しています。 白いラインは無変調時のキャリアラインで、DAC出力が約127に相当します。 一番大きなノイズはレベルから判定して、DACが64くらいで、レベルが上昇している時に出ている事になります。 レベル下降中は、大きなパルスノイズが有りません。 しかし、このデータをシュミレーションしようとして、同じようなDAC出力レベルで手動によるレベル変化をさせても、下降中はそれなりにノイズを確認できますが、上昇中はほとんどノイズらしきものは確認できません。 3-8エンコーダーで32と96と128のとき、ゲートを2回路通過するので、このDACデータのとき、一番遅延が大きいと思われますが、その遅延の大きさと、ノイズの大きさは相関がないようにも見れます。 

Wave_mod630hz_2

振幅立ち上がりの最中に出ているパルス性ノイズはアンプの特性かもしれないと考え、該当する6番目のアンプと5番目のアンプを入れ替えたのが左の波形です。 この推理は的中し、2番目のノイズ②の部分で前回のような大きなパルスは出ていなく、現れたノイズはDACデータ63-64間の切り替えノイズにほぼ等しくなりました。 但し、改造前にはあまり目立たなかった31-32切り替えノイズが①のように増えました。  波形で②のノイズが63-64の、③が223-224の切り替えノイズではないかと思われます。  ただ、なぜ5番と6番のアンプを入れ替えたら、ノイズが出なくなったのかは、不明なので、心配は残ります。

とりあえずは、3-8エンコーダーをふたつのゲートで実現している部分をひとつのゲートで行い、MSB側の遅延をそろえる。 もし、この対策でもダメならLSB側の5bitとMSB側の3bitのエンコード出力を完全に揃えることで、解決しそうです。

まずは、MSB側、2段のゲートを全Bit1段にしてみます。

38encoder8

Wave_mod630hz_3

上の配線図が3-8エンコーダーの中の2ゲートを1ゲートにした回路です。 今まで有ったゲートはADC/DACマイコンdsPIC33FJ32GP202のB8とB9のポートにその機能をもたせ、LSB側からMSB側の遅れは、ワンゲート分のみとしたものです。 2ゲート回路より若干の改善は見られますが、完全では有りません。 特に、低変調レベルの時、歪が目立ちます。

かくなる上は、LSBとMSBのタイミングを完全に揃えるしかないようです。 この方策として、またマイコンを使います。 8bit入力を12bit出力にエンコード出来るマイコンを使い、LSBもMSBも同時に遅らす事により時間差を無くします。 実装の関係で、DIP 28pin のマイコンを何種類か調査し、かつ、通販で入手できる品番として、モノタロウにてPIC24F32KA302というマイコンが見つかりましたので、これを手配しますが、納期に1週間くらいかかりそうですので、しばらく休止です。

 

とりあえず、ここまでの全データを公開して置きます。

RFADC_AMTX_audio-2.pdfをダウンロード

RFADC_AMPx12-7.pdfをダウンロード

7MHz_Si5351_VFO-1.pdfをダウンロード

AMTX-Si5351-VFO_7MHz.cをダウンロード

AMTX-ADC-DAC_decorder_2.cをダウンロード

Font5.hをダウンロード

Font6.hをダウンロード

Font12.hをダウンロード

Font5G.hをダウンロード

 

INDEXに戻る

2022年12月15日 (木)

おかしなオシロ画面

Ociro_1

左の画像は私のオシロの画面です。 モードは単純なsweepで7MHzの若干歪んだ波形を見ているところです。

オシロスコープは基本的に、左から右へスィープします。 従って、描画は、左側から始まり右へ移動し、絶対に戻る事はありません。 この画像は、一度、右側に進んだ後、円弧を描くために、左側に戻っています。 基本的にはあり得ない描画です。 唯一、これが可能になるのは、CRTの輝点を左側に振る為に、スィープ信号に外乱が生じた時のみです。

この画像は、7MHzの送信機を送信状態にして、出力15W程度を、ダミーロードに消費させ、その出力端子の両端の電圧をオシロでモニターした時の波形です。

Ociro_2

正常な出力波形は左のような波形をしており、この状態は正常状態ですが、なんらかのひょうしに上のような渦巻状の波形になってしまうもので、再現は簡単なのですが、その原因が判りません。

考えられる事は、使用しているオシロスコープがアナログ式のCRT方式で、水平、垂直の電界による偏向板で制御されているため、なんらかの外部要因で、水平偏向回路に高周波が誘導し、水平スィープの電圧を揺さぶっているのだろうとは思いますが、その原因が判らないのです。 5W以上の送信状態の時しか出ず、出力が1W以下になると出ません。

また、CRTの管内に磁界が作用したら、昔のTVのCRTと同じで、CRT上の輝点は移動します。 オシロスコープのすぐ横に、海外製のオイルヒーターが有り、正常状態の波形をしている最中にオイルヒーターの電源をONすると、異常波形になります。 オイルヒーターと電磁界をインターネット検索すると、このような情報が有りました。 しかもオイルヒーターの操作スィッチ面がオシロ側に向いておりました。 ただし、このオイルヒーターの電源をOFFにしても異常波形は出続けています。 オイルヒーターも一つの原因ではありそうですが、これだけではなさそうです。

ああでもない! こうでもない! と悪戦苦闘する事、2週間。 やっとほんとうの原因が判りました。 RF出力のコネクター内部でGND線の断線でした。 50Ωのダミー抵抗を繋ぐと、高周波が電源のGNDとオシロのGNDを経由して帰ってくる為、オシロのGNDを通るとき。水平偏向回路を高周波でゆさぶり。画面が左側へゆさぶられるものでした。 コネクター内の断線箇所を接続したら直りました。

INDEXに戻る

2022年12月11日 (日)

デジタル方式 AM送信機 再設計

<カテゴリ AM送信機(デジタル方式) >

デジタル方式 AM送信機の組み立てを行っている最中に送信周波数がずれるという問題が見つかり、またしても、PLL VFOは頓挫していましたので、PLL VFOをきっぱり諦めてSi5351によるDDSへ作り替える事にします。 SI5351のICは手元に在庫が有ったのですが、10pinの変換基板と25MHzのクリスタルが有りませんでしたので、これをやっと手配して、半日で、基板改造と、ソフト変更を行い、無事完成しました。

Amtx_newlcd

左が、DDS VFO化した時のLCD表示で、このショットはキャリブレーションモードの時です。

DDS VFOの配線図7MHz_Si5351_VFO.pdfをダウンロード

DDS VFOのソフト AMTX-Si5351-VFO_7MHz.cをダウンロード

Newrfamp_top

Newrfamp_bck

また、再設計を余儀なくされたRFパワーアンプも上の写真のように、ある程度見込みがつき、最大出力16Wくらいで、熱設計も目途が出てきましたので、データを取った後、全12台を作り替える事にします。

設計変更のメインは、CMOS ICによるゲートドライブの復活です。 CMOSゲートによるドライブは、2N7000クラスのCiss=20PくらいのFETに限られ、出力10W クラスのFETのCiss=400Pくらいのゲートをドライブする事は無理でした。 そこで、このCMOSゲートの出力で、BS170 プッシュプル回路をドライブし、その出力として、1W程度の正弦波に近い出力を得た後、これで、10W クラスのプッシュプルによる終段をドライブするという構想にしました。

結果はVY FBで、12Vの電源電圧で16Wが得られ、試作機では73%の効率でした。 また、BS170プッシュプルによるドライバーもFETを指でつまんでも問題ない程しか発熱しません。 ただし、データシートに書かれたPd max をオーバーしないように、安全の為、ドレインラインに4.7Ωの抵抗を入れました。 この状態で、終段の電源電圧を13.8Vまで上げると、出力は約21Wとなり、電源電圧対出力の関係のリニアリティは確保されており、ドライバーとしての余裕も確認出来ました。 実際の運用では、電源電圧は12Vとし、終段のFETのPdがオーバーしないようにします。

E級アンプを構成する為の、共振回路のコンデンサの値が、計算値と大きく異なる状態が継続していましたが、積層セラミックコンデンサ(MLCC)にDCバイアスを与えた時の容量ダウンが、当初考えていた数値よりかなり大きい事がわかりました。 MLCCの特徴について、詳しい解説がここにあります。 チップタイプのコンデンサはほぼ全てMLCCタイプですので、この問題は避けて通れない事になります。 従い、共振周波数を決めるコンデンサの両端には、DC電圧がかからないように回路変更を実施しました。 また、アキシャルやチップ部品で構成したインダクターのDC抵抗はかなりバラツキ、動作状態により、経時変化も大きい事から、DC直結の出力トランスはコアの磁気飽和が頻繁に発生し、FETを熱破壊する事も判りましたので、自作のUEWによるコイル以外の場合、トランスはDCカットする事にしました。

このAM送信機を組み上げて、パワーアンプの動作テストを行う時、RF出力のGNDをシャーシに接触させて置かないと、おかしなオシロの画面になるのですが、この原因が判るまで、2週間かかり、その間、回路構成まで疑う事になってしまい、ほとほと疲れました。

この問題で、電源フィルターのGNDを一部修正し、CNP12のピン番号が逆でしたのでこれも修正しました。 RFADC_AMTX_audio-1.pdfをダウンロード

この対策を行った後、取得したパワーアンプのデータは以下のようになりました。 当初、追加してあったドライバー段の電源ラインの4.7Ω抵抗は廃止してあります。

Newpowerampdata

終段の効率が80%を切っていますが、出力が大きくなった分、1石当たりのPdは許容値を超えているかも知れません。 またBS170プッシュプル回路のPdもギリギリ許容値なので、以後、この状態で検討を進めていきます。

7mhz_bpf_c

パワーアンプが1台完成したので、この1台のみを半完成状態の送信機に接続し、出力をチェックしました。 送信開始直後は16Wくらい有る出力が、どんどん減少し、約10秒後には5Wくらいになってしまいます。 原因を調べる為に、各ブロックの入出力をひとつづつショートしていくと、BPFの入出力を直結した時この現象が起こらなくなりました。 原因は、直列共振の為に使用したMLCCタイプの100Pでした。 これを40年以上前のDISCタイプの100Pに変更したら、あっさりと直ってしまいました。 最近は100Pの容量でもMLCCになっているので要注意ですね。 本来はシルバードマイカコンデンサでないとダメなのですが、フィルターのケースの中に納まりません。 実験に使ったセラミックコンデンサは公称50V耐圧で実力1000Vくらいありますので、これに交換し、様子をみます。

2023年1月

改良型のパワーアンプが12台完成しました。

Newampx12_schema

Newampx12b

Newampx12data_2

12台のアンプは、7195KHzにてドライブし、出力最大となるように、出力のパイ型LPFのコイル(L204)を微調整したものです。 12台中1台がコイルの巻き数が10ターンで、残りは全て11ターンにし、コイルのピッチを広げたり、狭めたりしました。 使った電源は実際に使用する回路を使い、測定した電源電圧はラインフィルターを通った後のRFパワーアンプの入力端子間のものです。  すこし、レギュレーションが悪いですが、後々問題になりそうでしたら、検討する事にし、それまではこのまま進行します。

12台のアンプのデータを取り、出力が小さい順に番号を付けました。 この番号が8bitのエンコーダーでLSB側から①、②、③・・・・とMSBまで配列されます。  ただ、心配ごとが。 ちょっとパワーが出すぎです。 Pdも許容値以上かも知れません。

Rfout1

Rfout2

また、出力波形の左側は、トロイダルコアによるトランスの1次側、右が2次側の波形で、極性が反転していますが。レベル差はほとんどありません。 前回NGだったのは出力回路を直列共振回路にしたのが原因であろうと予想し、今回は以前、電力合成が成功したLPF型にしました。

この12台の製作の途中で、秋月のBS170の在庫がなくなり、やむなく2N7000に一部変更しましたが、2N7000でドライバーを構成したアンプはいずれも18W以上を出力していますが、終段の効率は70%を切ってしまいました。

Mta100_tcvspd

左のグラフは、FET MTA100N10 のケース温度(Tc)対ドレイン損失(Pd)の関係をグラフにしたものです。 これによると、終段FETのケース温度が60度の時でも、Pdは21.6Wありますが、この数値は、放熱板の代わりに用意した、銅箔が均等に60度になった時で、厚さ25ミクロンの銅箔面を均等に暖める訳はなく、エージングで確認するしかないでしょう。

 

 

ここまでの、エンコーダー  + RFアンプユニットの回路図 RFADC_AMPx12-3.pdfをダウンロード

 

ここまで出来た所で、出来の良さそうな4台のアンプを使って、電力合成の確認を行いました。 結果は全くダメでした。 出力が足し算されません。 組み合わせによっては減算される事も発生します。 

Lpfphase_2


やはり、AMPの出力の位相が完全に揃っていないようです。 左のグラフは終段のLPFの減衰特性ですが、緑色の線は、コイルのインピーダンスと負荷抵抗50Ωの比をdBで表したもののようです。 7MHz付近にピークが有り、ここで、LCによる共振が発生し、きれいな減衰特性を得ていると思われますが、当然、この共振ポイントを境にして、その両側の位相は逆転します。 12台のアンプのLPFの特性がそろっていない事は前述していますが、共振周波数は管理されておりませんので、位相が真逆のAMPが出来て当然のようです。 前回、LCの共振回路が影響して、出力の合成がうまくいかなかったので、初期のころ、LPF付きAMPで電力合成の実験を行い、そこそこのデータが得られていましたので、今回もそれに合わせたのですが、前回はたまたま位相がそろっていた為だったのでしょう。

New2amplpfless

左の波形は、終段のLPFを廃止した時の出力波形です。 クロスオーバーぎみの波形ですが、E級アンプの共振コンデンサにDCがかからないようにした結果、ほぼ計算通りの容量で、きれいなドレイン波形を形成出来ており、トロイダルコアによるトランスを経由しても、歪の変化は有りません。

とりあえず、4台のみLPFを廃止したアンプを作り、そのデータを取ってみました。

New2ampdata_2

出力はかなり落ちましたが、効率が全て70%台となり、1石当たりのPdも安心できるレベルまで少なくなりました。 

この4台のアンプを下からBit1,2,3,4の順に並べ、合成トランスを50:12.5のインピーダンス比にして、電力合成のデータを取ってみました。

New2ampcombdata

4台のアンプをバイナリーで駆動していますので、データとしては15種類になります。 一番下のデータは4台のアンプを全て合成した時のデータになりますが、計算上では48Wくらいにならないとダメですから、かなりロスが生じている状態です。 ただし、実測データは理想の直線と合致はしていませんが、そこそこの数値を示しています。 仮にこの状態で、プリディストーションを行い、全部補正出来たとすると、各アンプの合成出力はLSB 1bit以内に補正出来る事を示しています。

この4台のデータから、なんとか目途が立ってきました。 12台全部の改造を行い、確認をする事にします。

New3ampx12

New3ampdata完成した12台のパワーアンプとそのデータです。 番号は、前回のナンバーをそのまま使いましたので、出力順には並んでいません。 LPFを廃止したら、全部ではありませんが、出力レベルの傾向が逆転した感じです。

確認を始めたところが、途中で、自作の電源が壊れ、12Vの電圧が38Vまで上昇し、電源用IC,DDS IC、LCDを壊してしまいました。 この事故の為、また、検討がストップする事を避ける為、電源の壊れた原因を突き止める上でも、破壊したICやLCDの交換を行い、中には、発熱で、銅箔パターンが2cmくらいの長さで焼失したりしましたが、なんとか正月休みと次に3連休を使い回復できました。

電源が壊れた原因は12V8Aの負荷に1分間以上耐える事が出来ず、シリーズ制御用のTRがコレクタ・エミッタ間ショートで、約38Vの電圧が12Vラインに加わった為と判りました。 この時のTR 2SA1943のコレクタ損は248W、3石構成ですから、1石当たり均等に流れると83Wの消費になり、ぎりぎりセーフの範疇ですが、3石のバランスが崩れ、特定の1石に損失が集中した結果、壊れたみたいです。 とりあえずはリニアアンプ用に用意したAC/DCコンバーターを使って検討し、時間が出来たら電源の修復を行う事にします。

電力合成を行う上で、各パワーアンプの出力端子での位相を確認してみました。

56phase

106phase

左上がNo.5とNo.6 の比較、右上が、No.10とNo.6の位相比較です。 垂直の赤い線は両方の波形のピークを直線で結んだもので、この線が傾いていれば位相差があると判断できますが、問題はないと言える状態になっていました。

Aftercomb4ch

左は、4つのアンプを合成した後の出力波形ですが、大きな歪はなく、実際の送信機では、この後に6次のBPFを通してアンテナに接続されます。 

①②③④の合成確認が終われば、次に③④⑤⑥の4台の確認を行い、以後2台ずつずらしながら最後の⑨⑩⑪⑫の組み合わせまで確認した結果、4台合計の最小出力は30W、最大出力は40Wとなり、最大出力時の全消費電流は7Aとなりました。 一応全ユニット合成が出来る事は確認できました。

単体での効率は70%台のアンプでしたが、4台合成時の概略効率は45%くらいまで落ちてしまいました。

放送局の設備でも真空管式より20%以上の効率とのことなので、半導体のPWM機より効率は悪いのでしょう。

つぎは、組み込みを行い、全12台の合成テストをトライします。

12台のアンプを実装完了し、8bitのデータを1から手動でアップしていきます。 電力合成トランスのインダクタンス分をキャンセルさせる為の直列共振回路がうまく動作しないので、コイルの巻き数を減らし、50Pの固定コンデンサと50Pのバリコンで調整出来る範囲に納めました。 テストモードで、ADのカウント値を上げて行き、63までは順調に増加して、64の時、出力がゼロになりました。 6bit目のラインが動作していないようです。 調査した結果、MSB側の3bit-7のデコーダーが動作していません。 原因はPIC16F84Aが死んでいました。 このマイコンに過電圧が加わり死んだみたいです。 部品箱をひっくり返して、同様なマイコンを探すと、PIC16F1827というマイコンが見つかりました。 18pinでI/Oもコンパチです。 早々、マイコンを差し替え、ソフトを改造して、やっと64カウント以上の確認が出来るようになりました。 127で25W、全電流が7A,128で25Wをわずかに超えますが全電流は5.8A。 出力が増加したのに、電流は減りました。 ふしぎな動作ですね。 効率が悪いのもうなづけます。 手動確認は結構時間がかかりますので、ここまで。 これ以上のカウントは実際に変調をかけて行います。

Mod21

Mod45

Mod88

上の波形は1KHzにて変調をかけたもので、見るも無残な波形をしております。 まだ、プリディストーションはかけていません。45%の波形までは、なんとかなるか。と考えますが、88%の変調は、ちょっと難儀しそうですね。 また、変調度に関係なく、周期的に発生しているパルスノイズも気になるところです。

 

Rfdac_amtx_comp




 

修理完了したデコーダーの回路図 RFADC_AMPx12-4.pdfをダウンロード

 
デジタル方式 AM送信機 再構築 へ続く
 

INDEXに戻る

2022年10月23日 (日)

デジタル方式 AM送信機 動作確認

<カテゴリ AM送信機(デジタル方式) >

デジタル方式AM送信機の配線が終わりましたので、いよいよ動作確認です。

まずは、オーディオ部分から。 マイクを繋ぎ、普通にしゃべってみて、変調度計のバーグラフの動きをチェックしました。 これが、さっぱりで、まともに動作しません。 

Meterdrive_c

ピークホールド機能をマイコンのソフトでやったのですが、このソフトの出来が悪く、思ったような動作をしません。 結局、左の回路図に示す通り、OP-AMPを追加する大幅改造になってしまいました。 ピークホールド機能は、ハードで構成し、マイコンは単純に出てきたDC信号をAD変換するだけにしたら、うまくいきました。

 

37decoder

電力合成回路のマイコンによるデコーダーの動作確認をしている時、間違って、RA1端子に12Vの電圧をかけてしまい、このI/Oが壊れました。 やむなく、今まで、RA0,RA1,RA2の3bitでデコードしていたものを、RA2,RA3,RA4の3bitへ変更し、PORTAを読み取った後、右へ2bitシフトして、解決しました。 12Vを間違って印加したのは、7pinのコネクタが二つあり、これを間違ってしまったもので、今後同じような事故が起こらないように、CNP13を7pinから6pinに変更しました。

 

3r3vreg

次に、RFパワーアンプへの信号接続と、電源供給をチェックです。信号系統は、一応設計通りデコードされた7MHzのキャリアが供給されるようになっていましたが、12Vの電源を接続すると、焦げ臭いにおいがして、煙がでます。 発煙箇所は3.3Vの安定化電源。 スペックを調べてみたら、最大入力電圧は6Vとの事で、ここに12Vを加えた為でした。 やむなく、3.3Vの3端子レギュレーターの前に5V1Aの3端子レギュレーターを追加して、対応しました。 すでに2石のICを壊していますので、手持ちのIC在庫が気になります。

10月の最後の日曜日。 電力合成回路がうまくいきません。 ステップ出力はなんとか理屈通りでるのですが、パワーが全然足りない。 消費電流が2A近くあるのに、0.1Wも出ない。

この原因を調べていましたら、RFパワーアンプの出力の歪が各アンプでまちまちで、合成したときうまくかさならないんか? 位相がバラバラなのか? そうこうしている内に、FETが死にます。 結局、真の原因は判らずじまいでした。

特定のパワーアンプが何回も煙を出して、FETが死んでしまう原因が判りました。 プッシュプルアンプの2石のFETを同時にONする、いわゆる、貫通現象が発生しているのが原因でした。 終段のゲートをクランプ回路で構成した事により、2石のFETが同時にONする可能性が大きくなり、その状態でドライバー段の出力波形がバイアス電流の調整の仕方で変った時、貫通電流が発生し、この原因を取り除かないまま、壊れたFETのみを交換する為、何度も煙を出して壊れるというのが真相でした。対策を検討する必要になるかも。

7195KHzで送信状態にして、受信機でこのキャリアを受信しようとしますが、ハムバンドの中を探しても、キャリアが見つかりません。 送信波形をオシロでモニターして7MHz付近にある事は間違いありませんので、周波数カウンターを接続してみると、なんと6935KHz付近なっているではありませんか。 どこかでPLLの計算を間違ったみたいです。 さらに、オシロで波形を見ながら、パワーアンプの出力ラインに指が触れると、周波数が低い方へ動きます。 また、パワーアンプ基板のGNDをシャーシに接触させても、周波数が動きます。

かくして、簡単なアンプで済まそうと作成した12台のアンプは、その出力が正弦波より大きく歪、計算通りの電力合成が出来ないという事が判り、12台のパワーアンプは再検討せざるを得なくなりました。 また、PLL VFOも不安定で、これも改善が必要です。

しばらくこのプロジェクトは休止します。

 

 デジタル方式 AM送信機 再設計 へ続く。

INDEXに戻る

2022年10月10日 (月)

デジタル方式 AM送信機の組み立て

<カテゴリ AM送信機(デジタル方式) >

主な回路ブロックが出来上がってきましたので、いよいよ組み立てに入ります。

Rfdac_front

Rfdac_back

Rfdac_left

Rfdac_right

7mhzbpf_2

C4080rev_001bk_3

左上は、50MHz LPFから改造した7MHz BPFです。 右上は、その特性をネットワークアナライザーで測定したデータになります。 第2高調波帯については、7次LPFと同等ですが、3次以上の高調波に対しては、7次LPF以上の減衰を確保しております。 低調波領域では、急激な減衰は期待できませんが、RFADCのサンプリング周波数500KHzがどのように影響するかはまだ分かりません。

7mhz_backpannel

上の画像は、BPFと出力レベル検出回路、同軸リレー、アンテナ端子と、受信機へのアンテナ入力端子をまとめたものです。

7mhz_pwr_mix_top

デコーダーから、12台のRFアンプへの配線が完了し、そして、12台のアンプから電力合成回路への配線も完了しました。 やっと完成です。 ここまで、2週間かかりました。

Rfdac_tx_comb

ベースになっているシャーシーはTS-700ですが、なんとかこのサイズに収まりました。

  

デジタル方式 AM送信機 動作確認 へ続く

 

INDEXに戻る

2022年10月 1日 (土)

RF DA変換回路(高周波デジタルアナログ変換)& 出力合成回路

<カテゴリ AM送信機(デジタル方式) >

dsPICを使ったAD変換と、プリディストーション機能付きの回路が出来上がりましたので、次は、8bitのデジタル信号を7MHzのキャリア信号に変え、この8bitの7MHzキャリア信号を高周波のままデジタルアナログ変換を行います。 

今回のパワーアンプの基準出力は1台当たり、15Wに設定しましたので、ピーク出力は計算上は約109Wですが、ロスがありますので、目標ピーク100Wとして、 キャリア出力はその1/4の25Wとします。

構成としては、LSB側のアンプをバイナリ駆動する5台のアンプと、MSB側の3bitをデコードして、駆動する7台のアンプ、合計12台のアンプの出力を、直列電力合成を行い、この合成の過程でDA変換を実現します。 電力合成回路に残る浮遊リアクタンスを直列共振回路でキャンセルした後、7MHzのBPFを通して、アンテナへ出力させます。

デジタル回路の基本としては、8bitの信号をDA変換する為には、重みづけした電力増幅器が8台あれば良いのですが、その場合、最上位ビットの出力は、最大ピーク電力の1/2必要です。 今回、作成しているAM送信機の最大出力はピーク時100Wであり、最上位ビットは50W必要です。 50Wなら簡単に1台のアンプで実現できますが、放送局の場合、最大ピーク電力1000KWとかという数値になりますので、その1/2の出力でも、半導体によるアンプでは実現不可能であり、100Wから200Wくらいのアンプを沢山同時ドライブして作る必要がある為、わざわざデコードして、数多くのアンプをドライブする事になります。 今回のAM送信機は、あえて、小電力のアンプを並べて、高周波のままデジタルアナログ変換を行う実験と、電力合成の時に発生する非直線性を改善するプリディストーション効果を確認する事をメインにしておりますので、コストパフォーマンスは甚だ悪い物になっております。 

このように、交信を行う目的だけなら、あまりメリットは無いのですが、すでに、複数のOMさんが、この方式でON AIRされており、その受信音は、PWM方式や、プレートスクリーン同時変調の音よりも、明らかに了解度が良く、その理由を確かめる事も一つの目的となって、製作を始めたものです。

 

配線図 RFADC_AMPx12.pdfをダウンロード

8bitencorder

左は、dsPICからの8bitデジタル信号(オーディオ)をLSB側のバイナリー駆動回路で、5bitの7MHzのキャリア信号に変える回路と、MSB側、3bitのデコーダーです。 このデコード機能は、標準ロジックICのなかでは、見つける事が出来ませんでしたので、ジャンク箱に眠ていた、古い初期のPICを使い、ソフトで必要な7chのデコードを行っています。

今では標準となっている内蔵のCR発振回路は、初期のPICには内蔵されていなく、外部発振回路オンリーですので、手持ちのクリスタルを使い、最高周波数の20MHzで動作させ、デコードの時間遅れを最小にしようとしています。 7個のLEDはデコーダーのデバッグと、のちのち、RFアンプが接続された時のモニターとして使います。 ロジックICの74HC00は本来3個で良いのですが、トラブルが発生した時の為に、予備として1個追加してあります。 この予備は電源以外は接続はされておりません。

Msbdecorder_2

ひだりの真理値表は、このPICが3bitのデータをどのように変換するかを示したものです。

ソフト的には、非常に簡単で、この変換を高速で繰り返す以外、何もしないマイコンになっております。

これらのドライブ信号により、以前、完成した12台のパワーアンプを駆動し、その出力を直列合成して、DA変換する回路が下の基板になります。 一応位相関係の動作チェックは完了しております。コアサイズが2種類ありますので、青色のコアはMSB側、黒色のコアはLSB側で使います。 理由は同じタイプのコアを12個確保出来なかった為で、他意は有りません。

Powrmix

バラックの状態で動作確認ができたら、次のステップとして、送信機としての組み立てに進む事にします。

 

 デジタル方式 AM送信機の組み立てへ続く

 

 

INDEXに戻る

2022年9月10日 (土)

デジタル方式 AM送信機の構想と製作

<カテゴリ AM送信機(デジタル方式) >

Rfdac_amtx_lcdRF電力合成器によるDAコンバーターの目途が立ち、必要な12台のRFアンプも完成しましたので、 今回製作するデジタル方式AM送信機の構想を紹介します。 まだ、構想レベルで具体的な製作にはかかれませんが、回路を少しづつ製作する上で、その機能の確認を行う為、まずは、PICマイコンによる制御回路の製作です。

左は、このAM送信機のLCD表示です。 送信機の機能を検討する上で、イメージを得る為に、表示のみ先に作成しました。 オリジナルは、以前作成した50MHz用AMトランシーバーのLCDですが、すでに本体は解体済みですので、この送信機で再利用する事にしました。 送信機の機能が固まるにつれ、表示も変更されますので、最終的には、異なった表示になると思われます。

以下にこの送信機の全体のブロックダイアグラムを示します。

Rfdac_amtx_block_2

WEB上で入手した情報によれば、短波帯のRF DACのリニアリティは、MW帯より悪化するとの事で、そのリニアリティの改善が肝になりそうです。 そこで、この送信機では、RF復調信号による負帰還(NFB)、または、プリディストーション機能などを検討する事にしており、その実現の手段が、今回の開発のメインになります。

まずは、7MHzのPLL VFOです。 このVFOも、以前の50MHz用VFOをそのまま周波数変更して実現しましたので、簡単に出来上がりました。 このPLL VFOは以前、7MHzのPWM送信機用に作り、パワーアンプの出力がPLL回路にフィードバックして、PLLがアンロックになった失敗作がベースになっており、再度、これを7MHzで使うには不安がありますが、シールドの強化や電源の分離などで、乗り越えようと考えております。 これに使用していますPICから、dsPICを制御する為のI/O設定がまだ、最終では有りませんが、一応、配線図も完成しました。

PLL VFO配線図 7MHz_PLL_VFO.pdfをダウンロード

I7mhz_pll_vfo_0

左の写真が、7MHz帯に改造したPLL VFOの基板です。 VFOのアナログ発振回路の周波数をオリジナルの25MHzから7MHzに変更したことと、DDSのAD9833の発振周波数を700KHz帯に変えただけで、ちゃんと、7MHzのPLL VFOとして動作しております。
周波数の可変スパンは100Hzと1KHzです。 AMオンリーですから、これで支障は無いと判断します。

出力は5Vppありますので、そのままRFパワーアンプへ供給可能です。

一方、音声信号をAD変換し、8bitのバイナリコードに変換した後、RFパワーアンプをドライブする為のデコーダー機能を別のPICマイコンで実現し、このdsPICの中でプリディストーションも実行する予定ですが、その具体的な手段はまだ有りません。 まずは、このdsPIC周辺のハード回路を組み上げ、信号を通しながら検討して行く事にします。

基板に回路を実装するにも、回路図が必要ですので、動作するかどうかも確認していませんが、とりあえず、回路図通り、基板を製作する事にします。

ADコンバーター周辺の回路図 RFADC_AMTX_audio.pdfをダウンロード

当初、テストやプリディトーションモードの設定を、VFO側のマイコンで行うと考えていましたが、DSP側とVFO側の通信がSPIを使って出来る見込みが立ちましたので、DSP側にモード設定機能を移し、VFO側は表示の為の結果をもらうだけにします。

dsPICのオーディオADCとDAC基板が出来ました。 まだ、作っただけで、動作チェックはしておりません。 これから、じっくり時間をかけて、ハードとソフトの検討を開始します。

Dsp_pcb_f

Dsp_pcb_b

3khzlpfdata

ADコンバーターの前で、3KHzのLPFをTX-88Dを真似て作ったのが左の特性です。 オーディオ帯域を3KHzまでほぼフラットにして、3KHz以上は急激に落とす特性ですが、やはりメーカー設計にはかないません。 メーカー設計と個人の趣味による設計の大きな差は、試作にどれだけお金をかけられるかの差でありまして、決して技術力の差ではありません。 アナログ回路のLPFはこの特性で一旦手を打ち、dsPICの中で余裕があればFIRフィルターで最終仕上げする事にします。

 
9月のシルバーウィークを利用して、ソフト開発に取り組んだところ、7MHz PLL VFOとdsPICによるAD変換した10bitのデジタル信号を8bitのRF DACをドライブする為の信号に変換するデコーダーができあがりました。

このデコーダーには、AM送信機のキャリアレベル調整機能、RFDACの非直線性(歪)を補正する為の、自動キャリブレーション機能などを組み込みました。

Rfadctxdisp2

左が、その機能を実装したLCD表示の一部です。 自動キャリブレーションした結果はフラッシュメモリーにセーブされ、電源ON時に読み出してプリディストーション機能が動作します。 このプリディストーション機能の精度は、入力されたアナログ信号の8bitデータに対して、RFアンプの出力誤差は、今のところ、+/-2カウントまでとしてありますが、実際にRFアンプをつなぎ、ダミー抵抗を負荷とした時の精度を+/-1カウントにすべく、12台の各出力レベルを調整する予定です。

これらを盛り込んだ、ふたつのソースが以下になります。

AMTX-PLL-VFO_7MHz.cをダウンロード

AMTX-ADC-DAC_decorder.cをダウンロード

dsPICのクロック部分を以前の記事で紹介したdsPIC33CHの設定にすると、発振回路は発振しているのに、Foscが生成されませんでした。 代わりに、dsPIC33FJの設定にすると、うまく動作しました。 dsPIC33FJとdsPIC33CHの生まれ故郷となる会社が異なるのが原因でしょうか?

通常の送信モードの時は、ADCが500KHzでサンプリングし、同じ500KHzのクロックでDA変換しますが、テストモードやオートキャリブレーションモードの時は、随時AD変換を行い、500KHzのサンプリイングを停止し、PICが計算を間違うのを防いでいます。

ここまで出来ると、次はいよいよ12台のパワーアンプとこのデコーダーの結合作業となります。

このAM送信機について、一番の心配毎は、高周波電力合成回路を、500KHzくらいのクロックでDAコンバーターを構成させる訳ですが、このクロック信号がどのくらいのスプリアスレベルになるか判らない事です。 結局このレベルは、AM送信機が完成しないと測定出来ませんので、最後の土壇場で、NGとならないように祈っています。

 

RF DA変換回路(高周波デジタルアナログ変換)& 出力合成回路 へ続く

INDEXに戻る

2022年8月15日 (月)

高効率E級アンプ再トライ

<カテゴリ AM送信機(デジタル方式) >

E級AMPを製作するつもりでしたが、出来上がったのはD級アンプでした。

実験中に次々とFETが死んでいくBS170 6石によるE級アンプを諦めて、せめて、効率が70%を切っても、壊れないPd 20WクラスのFETによる2石プッシュプル回路を検討する事にしました。

パーツBOXの中で見つけたのが2SK2925。 Pd=20WですがCiss=350PFとBS170x3より6倍近く大きく、もう74HC04ではドライブ出来ません。 そこで、7MHzの200W PWM機で使った、FETをタスキがけにして、振幅を2倍にする回路で実験しました。 しかし、たすき掛けに必要なのは、FETのゲートを完全にON出来る電圧であり、その電圧を確保しようとすると、終段のゲート入力インピーダンスが低い事もあり、結構大きなドライブ電力が必要です。 この電力は0.5Wくらいであり、小信号トランジスタではドライブしきれません。 実験の途中で、FETのたすき掛けを諦め、ダイオードクランプによるレベルシフトにより、ゲートをフル振幅でドライブする回路に変更しました。

10w_eclass_3_0

上の実装基板は、回路の基礎検討を行った時のもので、12Vの電源で、9Wの出力が得られ、効率も80%くらいになりましたので、 KiCADで作図した基板図をベースに1枚だけ基板を手作りしたのが、下の基板になります。 終段のFETのドレインは45mmx15mmの銅箔に張り付けて放熱板としてあります。 

10w_eclass_3_1

7mhz_amp_10w_test5

10w_eclass_3_2

上の回路がその全回路図です。 2SK2925のCossは190PF有り、この容量と両面基板の浮遊容量でE級アンプに必要な共振コンデンサは形成されていますので、C7,8は最終的には0PFとなりました。

左の波形がQ2,Q3のゲート電圧の波形となります。 ダイオードクランプのおかげで、約10Vppの電圧で、終段のFETをドライブできます。

当初、初段のBS170のVddを12Vに設定していたのですが、200mAくらい流さないと正常にドライブ出来ず、1分くらいの動作であえなく死んでしまいましたので、Vddを7Vまで下げ、200mA流すと、なんとかE級アンプとして動作するようになりました。 ただし、この状態でもPdcは1.4W有り、効率が50%としても700mWのPdですから、通常運用では壊れるのは時間の問題です。 このBS170をほかのFETに変更しようにも、Ciss=20PFというFETはこれ以外になく、放熱板なしで1.5Wくらいの実力のあるTRに変更するしかなさそうです。

そのTRをさがしている間に、ファイナルの効率を調べる事にします。

まず、C7,8が0PFと置いて、周波数を変えた時のデータです。 Vddは5Vです。

5v_eclass_3_0

目標の7200KHzで85%。最高94%が得られる周波数は7500KHzでした。  そこで、C7,8を47PFに変更してみたのが下のデータです。

5v_eclass_3_1

7400KHz付近で80%の最高効率となっており、ここは、C7,8ではなく、L1,2を変更しないとダメなようですが、あいにくL1,2は1uHの固定インダクタでいじれません。

次に実際に動作させるVdd=12Vで比較してみました。

12v_eclass_3_2

12Vの場合、C7,8は0PFの時が効率はいいみたいです。

終段に使った2SK2925は秋月で90円/石です。 もう少し安いのがないかと物色していると、MTA100N10KRI3というFETが25円/石で見つかりました。 ただし、Cissが425Pもありますので、今度は初段のドライブ能力が問題になりそうです。 そして、BS170の代替TRとともに、このFETを発注しましたので、入手出来たら、確かめる事にします。

8月19日 

手配していたトランジスターとFETが届きました。早速、組み換えです。 初段のトランジスターはTTC004BというPc=10W、ft=100MHzの東芝製です。 最初、入力トランス無しでトライしたのですが、ゲインがさっぱりでしたので、 18:6のトランスに変更したところ、Ic=40mAで終段のゲートを10Vppでドライブできるようになりました。 このときのDC入力は0.24Wで、効率1%でも放熱板なしで動作可能です。

終段のFETはケース温度100度のときPd=12WというMTA100N10Kですが、これも2SK2925より効率が良くなっています。

回路図は以下のようになりました。

New10w_amp_2

以下、トランジスターとFETを変更した検討時点での基板の表(SMD面)と裏(部品挿入面)です。

Newamp_fside

Newamp_bside

T3のコアはESD-R-10Eですが、18Tで148uHでした。 これは、同等のインダクタンスが得られる他のコアでも代用する事にします。 T1のコアは以前SWR計のCM結合器に使用されていたものですが、4Tで5.7uHのインダクタンスとなりましたのでアミドンの#43系と同等のコアと思われます。

そして、5Vと12V時の全体の出力と効率は以下のようになりました。

New_amp_data

12V電源でも86%の効率を確保でき、初段のトランジスターも終段のFETも指でずっと触っていられるくらいしか発熱しません。

次は、この回路を再度プリント基板図に落とし、量産前の最終確認を行います。

10w_amp_no1_pcb_2

10w_amp_input_2

10w_amp_q23gate_2

10w_amp_q23_drain

10w_amp_rfout

これらの波形は、左上が、この基板の入力コネクタの位置での7200KHz信号です。終段に12Vを加えていますので、リンギングが目立ちます。 右上は、Q1で増幅した後の、終段FETゲートドライブ信号で、終段のドレインには電源電圧がかかっていない状態です。 ちなみに、電源のDC12Vが印加されると、リンギングによりギザギザになります。 左下は、終段のドレイン電圧波形です。 E級アンプのつもりで製作してきましたが、動作はD級アンプで有る事が判りました。 右下は、この基板の出力となる50Ωダミー抵抗両端の波形です。 完全な正弦波ではありませんので、電力合成時に問題がでないか心配です。

そして、このNo.1 基板によるデータは以下のようになりました。

10w_amp_no1_data

最初に試作した回路より若干効率が落ちましたが、この状態で安定するかどうかは今後の台数確認にかかっております。

当初、プリント基板を外注しようと考えていましたが、ICを使用する必要が無くなった事から、12台、全部、手作り基板で行く事にし、たちまち、部品を確保済みの5台分を作成する事にします。 プリント基板の作成は、KiCADで4枚に面付したパターン図をインクジェットプリンターで印刷した後、これを両面テープで生基板に張り付け、最初にボール盤で穴あけを行い、次に外径線に沿って、カッターでケガキ線をいれます。 ケガキ線を表裏とも各20回くらい入れた後、自作のアルミベンダーに差し込み、折り曲げると、綺麗に折れます。 その後、パターンのエッジに1本のケガキ線を入れ、直径1mmくらいの棒状ビットを付けたルューターで、銅箔を削りテスターで完全に切り離された事を確認したら、最後に、直径1mmくらいの球状ビットでこの銅箔カット溝を広げれば出来上がりです。 両面基板の部品挿入面側の銅箔で部品の足がショートしないように、予め、6φくらいのドリルで銅箔を削っておけば楽勝です。

New_dclassamp_15a

5台のAMP Unitが完成しました。 そして、改めて、各unitを最大出力状態に調整した時のデータは以下のようになりました。

New_dclassamp_15data_2

実際に使う12V電源に於いては、出力が最大17.6W、最小14.4W、効率最大86%、最小効率79%です。 各Unitの出力は初段のバイアス電流で調整できますので、直列合成Unitとして使う時は、最小出力のUnitに合わせ込んで、動作させる事になります。

12v_pwr_mix_lsb

上の表は、4台のアンプをLSB側合成回路に使用した時のデータです。 計算値に対して、かなり少ない誤差で出力出来ており、もう微調整の範囲です。 ここまでできると、自信をもって残り7台のアンプを製作する事にします。

9月の上旬後半ですが、12台のアンプができあがりました。 途中でT2のコアが手配できず、ワンランク下のESD-R-19Eで代用しましたので、このサイズダウンしたコアを使ったアンプは効率も落ちました。 これらはLSB側の小電力用に使えば問題有りませんので、このまま進行します。

7mhz_damp_12sets

7mhz_damp_12sets_data

出来上がった12台のアンプとそのデータです。

この12台のアンプをRF DAコンバーターとしてAM送信機にまとめていく訳ですが、電力合成回路の製作を行う前に、アナログの音声をデジタルに変換する為に、dsPIC33FJを使った回路を製作必要です。 そして、このdsPICを制御し、送信機として必要な機能をPIC24Fのマイコンで実現すべく、その検討を開始します。

実際に電力合成回路を作成し、12台のアンプによる電力合成を行った結果、合成出力が極端に小さくなり、1Wも出ませんでした。
この原因はパワーアンプ単体の出力が歪んでおり、フェライトコアによるトランスの2次側で、基本波の大部分が第3高調波成分に変わる事のようです。 再検討が必要となりました。 

 

このパワーアンプは、特定の基板で、終段FETが何回も破壊すると言う問題点が見つかり、最終的に没となりました。

 

デジタル方式 AM送信機の構想と製作 へ続く
 


   

INDEXに戻る

2022年7月 9日 (土)

高周波直列電力合成(7.2MHz)

<カテゴリ AM送信機(デジタル方式) >

前回の記事のように、10WのE級アンプが出来たので、このアンプを2台用意し、電力合成の実験を行います。 インターネットで電力合成を検索すると、並列電力合成の記事は沢山みつかるのですが、直列合成に関しては、言葉そのものは見つかりますが、その内容を解説した記事を見つける事は出来ませんでした。

特性のそろったE級アンプを2台作成し、その二つの出力を直列に接続して、実験開始です。

Eamptestschema3

パワーアンプ部は、74HC04のFETドライバーと3次LPFを実装させます。 これをカッターとリュウターで削り出した基板に実装し、下記のような2枚の基板が出来上がりました。

2eamppwb

2eamplpfin

2eamplpfout

上の波形は、2台のAMPを独立した負荷に接続し、両アンプを同相でドライブした時の、負荷抵抗のレベルと位相を見たものです。 下のアンプが少しだけ、位相が進んでいますが、おおまかな動作を見るには支障は無いものと考えます。

ふたつのアンプのそれぞれの性能は以下のようになりました。 ゲートドライバーの74HC04を3回路パラにしたので、効率もかなり改善しました。

Eamp2per729pf

Pwraddtest5v

左が、Vddを5Vにして、電力合成の結果を見たものです。 上の2行は各AMP単体の5Vでのデータとなります。 合成はLPFの出力を2台シリーズに接続し、10:7のトランスで合計100Ωのインピーダンスを50Ωに変換した後、ダミー抵抗に繋いでいます。

その結果をみていると、少し違和感があります。

まず、個々に測定した出力は、合計して、3.78Wですが、2台を同時駆動して得られた出力は4.84Wと、計算から28%も高くなっています。 しかし、いいかげんなインピーダンス変換トランスでしたので、その誤差かもしれないと、納得して、次のデータを見ます。 この次のデータは、二つの基板に電源を通電したまま、一方のアンプのゲートドライブをONさせたものです。 その時の出力は1Wと0.9W。平均して0.95Wという事は、単独の時の半分のパワーしか有りません。 どうも、片方のアンプだけの場合、負荷抵抗と、動作していないパワーアンプのアンプ側へ出力が分散されるようです。 直列合成の場合、動作停止中のアンプは、負荷抵抗と同じ働きをし、結果的に、ダミー抵抗側へ伝送される電力は1/4になるのかも知れません。

その下のデータはゲートドライブはONしたまま、終段の電源をON/OFFしたものです。 電源の入力端子をオープンにした時と、ショートした時のデータを示します。 この場合も同じように動作していないアンプは負荷抵抗になってしまうのでしょう。 電力合成を直列方式で行う場合は、合成の各電力が一定の場合、その整合もやりようがありますが、複数のアンプがON/OFFを無秩序に繰り返す場合、何か特別な手当てをしているのかも知れません。

Pwraddtest5vlpfin

二つのアンプ間の位相差が悪さをしているのでは?と、各アンプのLPF出力端より位相差が少ない、LPF前の出力トランスの2次側をいきなり直列に接続し、得たデータが左の表です。 この表で大きく前回と異なるのは、出力が単体の時の半分になってしまい、2台合成時の出力と、単体の時の出力と変わらない事。 それに、ゲートドライバーでON/OFFした時も電源をON/OFFした時でも、出力差は大差なく、2台合成出力の約28%から25%くらいしかない事です。 結局、出力OFF時の出力インピーダンスを解決しない限り、直列合成はあり得ないと思われます。 

電力合成時、複数のアンプが任意にON/OFFを繰り返すような場合、出力インピーダンスの変化は避けられず、この出力インピーダンスの影響が、アンプの動作条件に即影響する、E級アンプそのものが不適当ではないかと考え、なにか情報がないか探すと、放送機に於けるD級とE級アンプの比較レポートが見つかりました。 このレポートでは負荷変動についての評価は有りませんが、D級アンプが有利との結論になっています。 レポートの中で、D級アンプは電源電圧に対する出力のリニアリティがE級より劣るとありますが、デジタル方式のAM変調なら、その欠点は全く問題になりません。 また、NHKがレポートしているデジタル方式のAM送信機も、個々のアンプはD級とありました。 ただし、これらの検討している周波数帯は1.6MHz以下の世界であり、目標とする7MHz帯では、やはりE級アンプに軍配が上がりそうです。

そして、直列電力合成に関する文献を見つける事が出来ました。 この記事は2006年に発表されたもので、5MHz時の最大効率が90%程度を示すD級アンプの計算値がグラフデータの中にあります。 現在は7MHzで、90%台を出せるE級アンプを素人でも作る事ができますので、E級アンプの方が効率はよさそうです。 直列電力合成のヒントも判りましたので、E級アンプによる直列電力合成に再トライする事にします。 

以下のように二つのAMPを接続し、T21とT22の巻き数比とRLの抵抗値を変えながらデータを取る事にします。 T21,T22の1次側巻き数は13ターン。 使用したフェライトコアは、秋月で入手したTR-20-10-5EDです。

Pwrmix1_cshma

Pwrmix0


まず、ふたつのアンプに13:4の巻き数比(Zout=50x(4/13)2乗=4.7Ω)のトランスを接続し、単独に動作させた時のデータです。

次に、このふたつのAMPの出力を直列に接続し、両AMPを動作させ、9.4ΩのRLに接続しますが、そのとき、TC21とL21で直列共振させます。 さらに、片方ずつドライブし取得したデータです。 同様にしてT21,22の2次側の巻き数を3→2と変化させ、RLもそれに応じて変更した時のデータとなります。 各表の一番右側にある電圧比は、両AMP同時駆動時の出力電圧(電力ではありません)を100%とした時、片方だけドライブした時の出力電圧の比です。

これは、50%が理想で、試作回路にバラツキがありますが、おおむね、50%となっています。 T21,22の巻き数比を、AMPの総台数の平方根対1に設定すると、2次側の総インピーダンスが50Ωになり、都合がよさそうです。 AMPは、同一出力のMSB側と、バイナリー出力のLSB側に分かれますが、LSB側は全部合わせても1/3程度のインピーダンスですので、合成する時のインピーダンスの総数はMSB側の全台数+0.33程度になると考えられます。 これは、実際にアンプの割り振りが決まった時点で、詳細を決める必要が有りそうです。

当初、AMPを2台作成し、データを取り、良好なら、プリント基板を起こし、量産する予定でしたが、現状では、今検討中の回路で完成するか確信が持てませんので、さらに2台の基板を追加する事にします。

Eamp4sets

Eamplpf400_2

4台のE級アンプが完成しました。 上が共通の回路図となります。 個々のアンプで、出力のバラツキがありますが、出力段のLPFのインダクターを伸ばしたり、縮めたりして、出力を調整する事が出来ます。 この4台を使い、電力合成の実験を継続する事にします。

Pwrmix_4_schema

左が電力合成回路のブロック図です。

合成トランスT1からT4の巻き数比はMSB側のシュミレーションとLSB側のシュミレーションでは異なります。

MSB側のシュミレーション時は4台のAMPとも合成トランスの巻き数比は8:4で、4台の直列インピーダンスは合計して50Ωになるように設定します。

LSB側のシュミレーションでは、バイナリー出力となるように、8:4、8:2、8:1、16:1とそれぞれ電圧が半分になるように設定します。 この場合、合計のインピーダンスは50Ωになりませんが、シュミレーションですから、問題有りません。

Pwrmix_4set

最初の表は、4台のアンプの出力が一定になるように、LPFのコイルを調整し、各々、単独負荷で、測定したデータです。 NO.1と2のアンプは、作成した初期の状態では85%の効率でしたが、今回改めて測定すると、かなり悪くなっています。 原因はまだつかめていません。 しかし、出力レベルは4台とも1.56Wに揃えました。

次の真ん中の表は、MSB側のシュミレーションで、すべて、同じ出力状態で、4台同時ドライブ、3台同時、2台同時、そして1台だけドライブしたときのデータです。計算値と書いた数値が4台同時ドライブの電圧レベルを100%とした時の、計算上の電圧比で、電圧比と書かれた列の数値が実際に得られた電圧比になります。 この結果は、かなり低い値になって、リニアリティが確保できない事を表していますが、トランスの巻き数比は変えられませんが、巻き数は変える事ができますので、実際に製作する時はカットアンドトライする事にします。

一番下の表は、LSB側をシュミレーションしたもので、電圧比は計算値にかなり近い値を示します。 これは、最終的に、個々のアンプの出力レベルを微調する事で改善できます。

この合成トランスの2次側に直列共振回路を入れて、合成トランスが持つ浮遊容量や浮遊インダクタンスをキャンセルさせていますが、この共振回路のQと出力レベルは無関係で有る事を確認できましたので、最終的に送信機にまとめる時、バリコンの耐圧が許容可能な限り大きなQに設定し、スプリアスの抑制にも使う事にします。 

下が、この実験中の風景です。

Pwrmix_test_0

ここまで出来ましたので、次は、基板を8枚にして、AM送信機の予備検討をしようとして、新たに、4枚の基板の手作りを始めました。 そして、先行の1台が出来ましたので、動作テストをすると、パワーは出るのですが、効率が50%台しか出ません。 前回作成のNo.3と4の基板では80%台を出していましたので、 その原因が判りません。 Vddを5Vと12Vと交互に変化させながら、原因を検討していたところ、ゲートドライブなしの状態でIdが1mAとか2mAなど流れるようになってしまいました。 これは、明らかにFETの劣化です。 5台の試作基板で、効率が大幅に異なることと、FETの劣化というトラブルにより、この10Wアンプは安定性と信頼性が疑問になって来ました。 

そして、FETを外して単品の導通テストを行うと、約半数のFETがドレン-ソース間のON時の抵抗が増大しており、これが効率を悪くしている原因のようです。 かくして、BS170によるE級アンプは失敗に終わりました。

AMの場合、無変調時でも、10Wアンプはフルパワーを連続して出す必要がありますので、10Wクラスの連続動作可能な高効率アンプを再検討する必要がありそうです。

 

高効率E級アンプ再トライ  へ続く。

 

INDEXに戻る

2022年6月25日 (土)

E級高効率RFアンプの実験

<カテゴリ AM送信機(デジタル方式) >

7MHzで10Wくらいの安いアンプを作ろうとしています。 目標は、効率80%以上のE級アンプです。 首尾よく、試作に成功したら、これを十数台作り、電力合成して、AM送信機に仕上げる魂胆です。 

参考にしたのは、E級アンプの実践的なレポートのある、JK1LSE OM のブログです。

まずは、効率90%のE級アンプへの挑戦です。 これが意外と難しい。なかなか90%の大台が出ません。 とりあえず、80%台がでましたので、ここで一区切りし、次のstepへ進む事にしますが、以下そこまでの経過です。

Eclassamptest_0

上の回路図が今回検討開始に当たり、設定した配線図になります。 終段はBS170の2石パラレル、プッシュプル(2x2)形式で、E級アンプを構成させます。 そのドライブ回路は、FETゲートドライバーのMCP1402Tで、電源電圧を12Vにして、BS170をフルスィングします。 その前に、CMOSゲートによりデッドタイム生成を行い、ファイナルのプッシュプル回路のFETが同時にON する事を防止します。 さらにその前段にDCバイアスを調整して、7MHzの矩形波のデューティ比を調整できるようにしてあります。 7MHzの源信号は、以前作成したDDSから4.5Vppでドライブします。

Pa_pp_mcp1402t

左は、そのゲートどライブ回路を蛇の目基板に実装したところです。 VDD5Vにて、70%台の効率を出せるのですが、このゲートドライバーのMCP1402Tがかなり熱くなります。 コアや巻き数を変更しながら、電源電圧も5V、10V、12Vと変化させているうちにICが壊れてしまいました。 とりあえず、ICは4個購入してありましたので、修理交換して、各定数の最適値を探して、80%台の効率が得られる状態になりましたので、12Vで1分くらい動作させた結果、今度はBS170、4石を道連れにこのゲートドライバーも壊れてしまいました。 データシートを見る限り、電源電圧12Vは全く問題ないはずですが、ファイナルの電源電圧を12Vにすると、たちまち壊れてしまいます。 原因を調べようにも、すでに手持ちのICは全滅。 やむなく、手持ちのTC4426に改造して、再検討開始です。

Eclassamptest11

ただし、TC4426を以前RSで買った時は90円でしたが、現在は246円以上していますので、もっと安いICへ置き換えが必要です。 置き換え品は後で探す事にして、実際に組みあがった回路は以下のようになりました。3枚の写真の間はリード線や同軸ケーブルでつながれています。

Pa_pp0

Pa_pp_gate

Pa_pp_drain

Pa_pp_drainrfout

上の波形は左から、ゲート端子の電圧(10V/DIV)、ドレイン電圧(20V/DIV)、ドレンイン電圧とフィルター後の出力波形(20V/DIV)です。

見ての通り、ドレイン電圧が同じ形をしていません。 回路を非対称に作った事が影響しているかもしれません。 このような波形ですが、実測データは下のようになりました。

Pa_pptestdata_2

VDD 5V、12Vいずれの状態でも80%台の効率は確保できましたが、12V電源の場合、FET1石にかかるPdは、2x3の場合で、0.446Wとなりました。 これは、データシートから割り出した筐体内温度60度の許容値0.599Wの74%で実用レベルです。 ちなみに、2x2の場合、1石当たり0.669Wとなり、これは許容値ギリギリで、余裕が有りませんので、交信中に壊れる確率が高いです。 2x2の構成で放熱板を追加するより、FETを2石増やして2x3にした方が安くつきそうです。

Eamp_test_final

このアンプを8bitのDAコンバーター用に使うと、最低12台、欲を出して、bit数を10bitまで上げると最低21台作る必要があり、大きなフェライトコアを使った現状アンプでは、フェライトコアの材料代だけで、600円くらいしますので、21台作ろうとしたら、12,000円くらいになってしまいます。 そこで、コストダウンの為に、L1を手持ちのチョークコイル(100個くらい在庫)に変更し、T2のコアも、一回り小さなフェライトコアに変える実験を行いました。 左がその写真です。

出力トランスに使うフェライトコアをESD-R-22SDに変えると、150円くらいで手にいりますので、21台分で、3000円と少しで実現できます。 そして、検討の結果、効率は89%まで向上し、コストダウン出来た上、効率も上げる事ができました。

Eamp_test_final

1uHの空芯コイルは基板から10cm以上離れた場所で約1uHでしたが、写真のように基板に密着させた状態では0.89uHしかありませんでした。 そこで、L3とL4を0.5uHにした時のデータを取ってみました。

Eclassamptest_2

VDD5Vの時は91%の効率となりましたが、12Vの時は73%まで悪化しています。 やはり、L3,L4は1uH前後でないとダメ見たいです。 

そこで、1uHのアキシャルインダクタに変更してみました。 このインダクタの特徴は小型であることと、そこそこのQが確保できる事です。 秋月で1本7円で販売されていました。

Eclassamptest_3_3

7200KHzに周波数を固定して、C14と15を変化させた時のデータです。 5Vの電源では、91%の効率をあげる条件がありますが、同じ条件で、12Vにすると、70%くらいまで落ちてしまいます。 表の中で、色分けした条件なら、なんとか80%をキープします。 80%でも、Pdは余裕がありますので、あまり欲張らない方が良いかも知れません。

今までの実験経過から、部品のレイアウトを整然と行い、リンギングの発生を抑える事が、安定に高効率を得る条件のようですので、ゲートドライブ用のICが確保で得来た時点で基板を作り替えてみる事になりそうです。

ゲートドライバーのICと変換基板を手配できましたので、さっそく実装してみました。 ところが、ICの仕様を読み間違えたようで、入力レベルが5V以上必要なICでした。 また、TC4426を使って、Vddを12Vまで上げると、異常信号でAM変調されます。 出力段の信号がTC4426の入力にフィードバックされているような波形で、Vddを下げると、小さくはなりますが、ゼロにはなりません。 そこで、このゲートドライバーは止めて、74HC04のみでFETのゲートをドライブしてみました。 すると、異常信号によるAM成分は消えてきれいになり、かつTC4426の時より出力が出るようになりました。 以降、74HC04のみで進行する事にします。

配線図は以下です。

Eclassamptest12

Eclassamptest3

Eamp_axi1uh

上の表は、74HC04オンリーで、1uHのアキシャルインダクターを使用した時のデータです。

Vdd=12VでC14,15が709PFのとき、79%の効率で11Wを出力し、Vdd=5Vの時の効率が81%です。 12Vと5Vの時の効率があまり変わらないという事は、このアンプを10数台電力合成した時の個々の出力を、Vddを変える事により簡単に直線的に変更できることになりますので、便利です。 左の写真は、アキシャルコイル実装状態で、基板の中がかなりすっきりとなりました。

  

 

従来、プリント基板の作図を行う場合、プロ用のソフトを使っていましたが、このプロ用のソフトはWindows XP用で、それ以降のOSでは、ライセンスの関係で動かないという問題がありました。 XPがインストールされたデスクトップのPCとHD仕様のディスプレーは有るのですが、この古いPCを引っ張り出しても、狭い机が、いっそう使いにくくなりますので、最新の無償のソフトを探す事にしました。 そして、見つかったのが、KiCADという、私が以前使っていたプロ用のソフトと似たようなアプリが今、世界中で利用されている事を知りました。

さっそく、このソフトをインストールして、このE級アンプの基板の作図を始めました。 初めてのソフトでも、インターネットで検索すれば、たちまち、操作方法のアドバイスがあり、約5日間で、配線図、基板図用の、オリジナルのシンボルやフットパターンを追加しながら、基板図ができあがりましたので、できた基板図の通りカッターとリューターで銅箔をはがし、1枚だけ基板を試作しました。 下が、KiCADで作図した基板図です。

Kicad_new_pcb_0

Eamp_on_new_pcb_0


 左は、上の基板図の表面のみカッターで銅箔を削り、手作りした両面基板に部品を実装したところです。 FETとコイルとコネクター以外の抵抗、コンデンサは1608のチップで作りましたので、見た目は、かなりすっきり仕上がりました。

作図した基板には、FETゲートドライバの74HC04のパターンも用意してありましたが、今までの手作り基板と兼用する為、ゲートドライバーは、別基板に実装し、この新作基板は、BS170によるファイナル部分だけを実装しました。 いままでの回路と異なるところは、プッシュプル回路の配置が対称になったことです。 そして、12Vで測定したデータは以下のようになりました。 共振用コンデンサは707Pがよさそうです。 出力は11Wを超え、かつ1石当たりのPdも許容値内ですので、これをベースに量産する事にします。 このコンデンサの容量組み合わせは330P+330P+47Pです。 全てCH特性のチップコンデンサです。

Newpcb_eamp_0

この表の中にある842Pの状態で、エージングをしていると、約10分でFETが3石すべてがオープン状態で壊れてしまいました。 壊れた直後のFETの温度は、触れないくらい熱くなっていました。 1石当たりのPdは許容値内ですが、この数値は6石のFETにPdが均等に割り振られたもので、実際のPdは最小と最大で2倍くらいまでバラツクと想定されます。  この時の最大Pdは0.612Wくらいと予想され、60度の限界値0.599Wを超え、この為、1石がNGとなると、残りの2石で全体のPdをカバーする事になり、次々と壊れたものと思われます。 プッシュプルのもう一方の3石は無傷でした。

そこで、最初実験したデッドタイムコントロール機能を再度追加し、出力と効率を制御する事にしました。

デッドタイムコントロール回路を追加した回路図を下に示します。

Schema_add_dedtime

Dt_gate

Dt_drain

Dt_lpfout

左上から、終段のゲート電圧、終段のドレイン電圧、そして、LPFの出力の波形です。 基板のシンメトリ性が功をはくし、ドレインの波形も大幅に改善しました。 そして、デッドタイムを色々調整した結果、以下のデータとなりました。

Add_dedtime

黄色の状態でエージングを実施し、1時間OKでした。

今回の回路構成は、10台以上のアンプを直列に接続して、電力合成する必要がある為、出力整合回路と、出力設定機能を兼ねる為に、巻き数の多い絶縁トランスを採用しています。 この構成のE級プッシュプル回路の例が見つからず、製作中のアンプがほんとうに正しいのか判りません。

このE級プッシュプル回路の構成は、この記事の没頭で紹介した、JK1LSE OM のブログや周波数が異なりますが、トラ技の記事とも異なります。 多分、それが影響しているとは思いますが、C14,15とL3,L4の共振周波数の関係がこれらふたつの記事と一致しません。 ちなみに、L3,L4,L1の交点から、0.1uFでGNDへ落すと、C14とL4及びC15とL3の共振周波数は、7.2MHzより少し高い周波数の時、効率最大となりますが、効率そのものは最大でも80%でした。

Combtrans1by2

左は、コンベンショナルトランスを使った時の出力データです。 トランスの巻き数は2:4ですので、プッシュプル回路の負荷インピーダンスは12.5Ωになります。 そして、70%台の効率です。 この効率は、LPFの後で計算した場合、だいたい、どのインターネット記事も似たような数値で、一応世間並みの動作はしているようです。 この回路は、今までの回路に比べて出力は小さいですが、結構安定して動作し、出力波形もかなり綺麗です。 ただし、これを採用するかどうかは、電力合成の実験で決める事になりそうです。

今回のAM送信機は大小の出力を電力合成をするのですが、その合成のノウハウは公表されておらず、自分で実験しながら、試行錯誤するしかないようです。

高周波直列電力合成(7.2MHz)  へ続く。

INDEXに戻る

2022年5月21日 (土)

受信の音声が出ない

Ts711_frontpanel

久しぶりに、修理情報です。 最近は自作の作業が多く、修理情報を取り上げる事は少なくなったのですが、今回のTS711の故障は、まず設計ミスが有り、さらに生産上の品質管理に問題がありましたので、かなりの頻度で発生しそうと判断し、公開する事にしました。

故障の症状は、題名のごとく、受信時にスピーカーから音が出ないという、トランシーバーとしては致命的な故障です。 ただ、音が出ないだけでなく、時々、ぶつぶつとノイズが出だし、それが継続した後、無音になる事もあります。 音量ボリュームを急激に変化させると、一瞬音が出る事もありますが、故障が直る事はありません。

オシロを使い信号の流れを追いかけると、オーディオのパワーアンプIC Q11の入力までは信号がきていますが、出力はありません。 このICの出力端子となる1番ピンのDC電圧を測ると約12V。通常、オーディオパワーアンプの出力端のDC電圧は電源電圧の1/2が正常値で、このモデルの電源電圧は13.8Vですから、出力端子のDC電圧は6.9Vでなければ音は出ない事になります。 ICのDCバイアス系が壊れているようです。 入力端子へ信号を伝達するコネクターを外すと、本来0Vであるべき入力端子のDC電圧が約12Vになります。 これらの症状から、ICの故障か周辺のDC接続された部品の故障だという事が推定できます。

Mb3713kwschema

基板をとりはずし、半田付け面を観察すると、自動ディッピング装置により、きれいに半田付けされた跡が観察できますが、5番ピンがどこにも接続されていません。 上の配線図上でも、記載がありません。 このQ11というICは富士通製のMB3713という品番です。 このICのデータシートをインターネットの中で検索しました、得られたのは中国語によるデータシートだけでした。

Mb3713このデータシートによると、5番ピンはOFFSET ADJ用と書かれており、通常は、ここに抵抗を接続して、入力端子に生じるDCオフセット電圧をキャンセルし、出力端子のDC電圧が電源電圧の1/2になるように補正するものです。 このような端子ですので、そのDC電圧を固定する必要があり、通常はGNDに接続されます。 中国語のデータシートでも実施例はGNDへ接続しています。 中国語のデータシートだから信頼性は低いので、このICを使った記事がないかインターネットを調べたところ、1件だけですが、このICを実際に使った回路図が公開されており、その回路図でも5番ピンはGNDへ接続されておりました。 

そこで、このオープン状態にある5番ピンをGNDへ落してみました。すると、音が出るではありませんか。 どうやら、5番ピンはオープン状態でも正常に動作はするけど、経時変化で、状態が変わったとき、それをカバーできなくなり、音が出ないという症状に陥るようです。

この5番ピンをGNDへ落して、1時間くらいエージングを行ったところ、また、ぶつぶつとノイズが出だし、音が出なくなりました。 

はたと、困ってしまいました。約2時間、推測を繰り返して、気になったのが、ICの半田付けが富士山状に非常にきれいに処理されているのですが、一部の端子は丸くなった団子状のはんだがあります。 この団子状のハンダ付けは、もしかしたら、自動ディップマシンによる芋半田かも?。 そこで、全てのICの半田付けをやり直す事にしました。 方法は40Wくらいのこてで半田を追加しながら、ICの足を暖めるとその内、半田のなかから蒸気のようなけむりが出だし、ICの足に半田が表面張力で張り付く状態となります。 これはICの足の温度と半田の温度が一致したときに起こる現象で、確実に半田付けされた証拠になります。

この作業を行った結果、音が出るようになりましたので、そこから約3時間エージングを行い、異常が起こらない事を確認できました。

5番ピンをGNDに落としていないのは設計ミスですが、生産上でも半田付けのミスがあったようです。

自動ディップマシンは基板をチェーンでドライブするコンベア上に乗せ、それを等速度で送りながら、半田槽の上を通過させ、全部品をはんだつけする装置ですが、このスピードはノウハウがあって、量産工程で最も半田付け不良が発生しないレベルに設定されています。 ところが、バイポーラタイプのパワーアンプは、半田付けする前に、放熱板に固定され、ICの足の熱容量は他の部品よりかなり大きくなっています。 さらに、ICの放熱効果を良くする為に、ICの足の形状は熱伝導が良くなるように設計されている為、 熱容量はいっそう大きくなります。 この辺は大出力用のハイブリッドパワーICとは対照的です。 ハイブリッドパワーICはこのハンダ付け不良を軽減する為に、丸棒タイプの足を使い、かつ途中にキンクを入れ、ハンダ付けの際に足の熱がICの放熱板側へ行かないようにしているのが大半です。 このパワーアンプ用ICで最適な品質を維持する為にコンベアの速度を遅くすると、IC以外の半田付け部分で半田タッチが増加するという問題がありますので、ベスト設定したコンベアの速度を変えるより、不完全な半田付け状態が発生するかも知れないパワーICは、ディップ装置を通過した後、再度手はんだするというのが一般的です。

TS711のパワーアンプのICの半田付けは自動ディップのみで、手はんだの跡がありません。 これが今回の故障の直接の原因と考えられます。 

2次加工に出した工場の半田付けレベルがKENWOODが考えている品質レベルに達していなかったのでしょうね。

Af_powramp_back

上の黄色の枠で囲った部分が今回再半田したところです。 これで問題の再発は起こらないかウォッチする事にします。

 

INDEXに戻る

2022年3月12日 (土)

160m用 8m高のスローパー

<カテゴリ:アンテナ>

200Wの1.8MHz用SSB送信機が出来上がりましたので、国内用のアンテナを常設すべく、再検討する事にしました。 過去の実験から、フルサイズのロングワイヤー(40m)を展開すれば、近距離しかカバーしない国内用のアンテナが出来上がる事は判っていましたが、給電部が敷地外の地上になり、敷地外(市有地)まで同軸を伸ばしたり、そこにマッチングBOXを臨時で置く事は出来ても、常設は出来ませんでした。 そこで、マッチングBOXも同軸も敷地内に置き、市有地の調整池上空のみを借用する事により、常設のアンテナを実現する事にしました。

この肝は、グランドアースをどうするかが最大の難問でしたが、ふと、思い出したのが、家の構造です。 この家は、木造鉄骨で、その鉄骨と電気的に接続された直径10cmくらいの金属パイルが16本地下へ打ち込まれています。 パイルの長さは5mから10mくらいあり、これも立派なアースとして動作するかも知れません。 まず、この鉄骨とベランダのアルミ合金の手すりが電気的につながっているか確かめ、この手すりに台所用のアルミ箔を約30cmほど巻き付け、これと、マッチングBOXのアースを繋ぎ、整合実験をすると、共振周波数でSWR1.3以下を実現できる事が判りました。

この予備実験から、逆Lではなく、高さが8mしかない短縮スローパーを作る事が出来る事が判りましたので、スローパーの斜め部分を、取れるだけとれる寸法にしたアンテンナを構築する事にしました。  以前の実験は2015年で、その時は50mのワイヤーを張る事ができましたが、調整池の周りに、雑木が生い茂り、今では、我が家で池周辺のメンテをやっている範囲内になる、36m張るのがやっとです。

160m_longwire

上が構想図です。 下が、MMANA-GALでシュミレーションした特性です。 36mの部分の線材はLANケーブルを割いて取り出したAWG24のワイヤーです。

Mmana_slowper

下の写真は、高さ8mのベランダから釣り竿を横へ張り出し、AWG24のワイヤーを張った起点です。 そして、その下がベランダの手すりに巻き付けた0.3mm厚20cm x 30cm のアルミ板に金メッキのハトメを打ち、ハトメに半田付けしたケーブルをマッチングBOXのGND端子へつなぐようにしたアンテナアース部分です。 推定静電容量は2000PF以上です。

160m_wire_end

160m_antgnd

160m_mtu

160m_machingbox_schema_2

160mlw_swr     

左上が、マッチングBOXの中で、その右が、その等価回路です。 今回のマッチングトランスはAWG28のワイヤーを2本を一束として、全部で10束のワイヤーを6ターン、FT240-#43コアに巻き、6ターンずつを、直列に接続したもので、同軸ケーブルの芯線を⑩番タップへ、アンテナへは⑦番タップから、ローディングコイルを経由して、つながります。 コイルのインダクタは5.5uHでした。 ローディングコイル込みのアンテナのインピーダンスは約25Ωです。

そして、左上がこのアンテナのSWR特性で、一応SSBバンドへ合わせてあります。

自作のアンテナアナライザで調整した後、TS-930Sから60W出してチェックしましたが、ほとんど変化はありませんでした。

さっそく、その日の晩にテストON AIRしました。 残念ながら自作の200W機は動作が安定せず、TS-930Sによるアンテナだけのテストになりました。 こちらからコールしたQSOが2局、相手からコール頂いたQSOが2局。 いずれも双方で59から59+20dBのレポートでした。 そして、CWの時とは比べ物にならないレベルのノイズに閉口しました。 この4局以外の方からもコール頂いたのですが、結局コールサインを取る事が出来ず交信不成立でした。 

その後、1週間くらい使った感じですが、3エリアを含めた西側の3,4,5,6エリアがカバー範囲で、2エリア以東は、相手の方の設備が平均以上の性能の場合のみ交信可能のようです。 アンテナの打ち上げ角からしたら、シュミレーション通りの結果ですので、ローカルラグチューには最適のようです。

約3週間使った結果、せめてゲインをプラスにできないものかと、再度逆Lにトライしました。 しかも、マッチングBOXと同軸ケーブルは敷地内に収まるとという条件です。 

3階のシャックから同軸ケーブルを一度地上まで降ろし、そこから土の上を10mくらい這わせて、マッチングBOXの位置を決めたところ、同軸ケーブルの長さは約40mとなりました。

そして、下のように展開しました。

160m_l_2

L

160m_machingbox_l_2

Swrl_2

ゲインが0.1dBアップしましたが実際は誤差内です。 今回のマッチングBOX内は延長コイルでなく、短縮コンデンサとなり、インピーダンス比は1:1のトランスとなりました。 この延長コイルが無くなった分だけロスが減ったとおもわれますが、どのくらいかは不明です。 実際に使った感じはあまり変わりませんでした。

 

せめて、ゲインがプラスにならないものかと3回目の改良です。 今まで使用していたワイヤーは、調整池の上空に展開する事から、あまり目立たない、LANケーブルを割いて取り出したAWG24のワイヤーを使っていました。 このワイヤーの直径は0.5mmくらいです。 これを1.6φのマグネットワイヤーに変更する事にしました。 マグネットワイヤーは茶色に着色されており、昼間でもあまり目立ちません。 ワイヤーを張り替えるついでに長さも2mほど延長しました。  また、マッチングBOXのGND端子は池の周りに張り巡らされている金網に地中を通った2φのアルミ線で接続しました。

Mgwire_2

L1r6


Trans3

Iwl1r6

短縮コンデンサは1340PFになり、トランスの巻き数比は10:8になりました。 アンテナのインピーダンスは短縮コンデンサ込みで、32オームです。 そしてゲインは +1,86dBとなり 前回より2.2dB上がりました。 200Wの出力が332Wになった事に相当します。

約10日間使用した結果、ワイヤーが少し伸びたようで、中心周波数が1.834MHzまで下がってしまいましたので、短縮コンデンサの値を1250PFに変更しました。

 

INDEXに戻る

 

2022年2月13日 (日)

160m SSB 送信機 ケースイン

カテゴリ<SDR> [1.8MHz  自作  dsPIC]

200Wリニアアンプも完成しましたので、いよいよ、160m SSB送信機をケースに収納します。

手配しておりましたIDEALのケースが届きましたので、2月中旬の屋外で、ケース加工を行い、2日間で、組み立て完了しました。

160mssbtxfront

160mssbtxinsaide1

とりあえず、通電テストは完了しました。 ケースの高さの計算を間違い、ファイナルのコアが天板ぎりぎりです。 巻線があると、この巻線の直径分のみ天井が膨らみますので、コアが天板に近い部分の巻線をずらしました。 写真で青色のコアが直に見えているところがそれです。 出力3.5W以下なので、多分OK? これから詳細の確認にはいります。

200Wのリニアアンプに接続したところ、出力が出すぎますので、マイクボリューム最大及びCW送信時に200W出るようにVR7を調整してゲインを下げました。最終的なこのユニットでの出力は約3.2Wくらいになりました。

 

T4(終段の出力トランス)の1.8MHzに於ける1次側インピーダンスが60Ωくらいしか無く、ちょっと少ない気がしますので、コアをESD-R-18SDから、ESD-R-25L-Aへ変更しました。 これで1次側のインピーダンスは130Ωくらいになり、実際のインピーダンス12.5Ωの約10倍になりましたが、出力が若干落ちたものの、IMDはあまり変わりませんでした。

下が、その変更後の出力トランスです。

160mtxt4corechange_2

この状態で、実際にダイナミックマイクをつないで、交信のシュミレーションをしてみました。 マイクの出力インピーダンスを50KΩに設定してあったのですが、ゲインが不足します。マイクとの距離を20cmくらいにしたとき、マイクVR最大でも、ピークで30Wくらいしか出ません。 マイクアンプのゲイン設定を間違ったようです。 本来、ALCアンプの入力レベルは-40dBくらい必要なのですが、ALCが動作開始する入力レベルは-28dBしかなく、12dBの不足です。 やむなく、ALCアンプのゲイン設定を40dBから60dBに変更し、8dBのオーバー分はマイクVRを絞って使う事にしました。 

 

一応は使える状態になりましたので、これでTSSへ保証認定依頼する事にします。

 TSSへ送ったブロックダイヤグラム 160m_SDR_TX_BLOCK.pdfをダウンロード

TSSへ日曜日に送り、保証料の振り込みを月曜日の朝一に実行するように銀行へ依頼したら、月曜日の夕方には、保証認定する旨のメールが届き、正式認定書はその週の金曜日に届きました。 さらに次の月曜日の朝、総通へ変更申請を行うと、火曜日に審査終了し、免許状送付用の封筒を送れというメールが総通よりきましたので、水曜日に返信用封筒を送ると、翌週の月曜日に変更された免許状が届きました。 ただ、アンテナがまだ張られていない事。 200W送信機用のAC/DCコンバーターから約100KHzおきに発生するS9オーバーのノイズ対策が出来ていない事もあり、すぐにはON AIRできそうもありません。

AC/DCコンバーター電源からのノイズは対策できました。

アンテナが出来ました。

アンテナの動作確認出来た次の日、午後7時過ぎにこの送信機+200WリニアでCQを出しました。 香川県高松市からコール頂き、送信機も正常に動作している事を確認できました。 ただ、送信機の回路に不安定要素があるみたいで、電源ONしてもメインマイコンがSTOPしてしまう事があったり、マイクから変調がかからないと言う故障があります。 原因は、チップ部品のハンダ付け不良と、ジャンパー線の被覆が薄い事もあり、基板のビス締め等の外圧により、チップ部品のハンダや電極が割れたり、ショートする事があるみたいです。 ON AIR前に一通りは修理対応を行いましたが、その内、また発生するかも知れません。 

使い始めてから1か月たちましたが、同様な問題の発生はなくなりましたが、時々送信モードにしても電波が出ないという現象が出ます。多分、マイクスタンドのスタンバイSWのチャタリングだろうと、波形をチェックしてみました。 通常の操作ではなんともないのですが、たまに左下のような波形がマイコン端子に加わり、異常動作しているものでした。 対策として、マイコンの入力端子に接続してある0.1uFのコンデンサを1uFに変更しました。 右下がその波形で、何回かトライし、最悪状態での波形になります。 PTT Swが切り替わったかどうかの判断期間を50mSECに修正。

C_0r1_160mtx

C_1r0_160mtx


たまに、送信周波数とLCD表示が一致しないという問題が発生しました。 ロータリーエンコーダーのチェックは1m秒間隔で行っていますが、LCD表示の更新には約15m秒かかります。 15m秒の間に、DDSの周波数を変更し、次に周波数表示を変更しますが、DDSの周波数変更中に周波数の変更があった場合、この新しい周波数を表示してしまうというバグです。 対策としては、ロータリーエンコーダーのチェック間隔を4mSECに変更し、周波数変更があったら、DDSと表示の周波数変更を連続して行い、その間に周波数の変更が有っても、それは次のステップで処理するというプログラムに修正しました。 LCDの表示の追従がやや遅れますが、表示と送信周波数の不一致は無くなりました。 また、ラストメモリーの周波数がずれるというバグも修正しました。

音声信号の低域をカットしすぎでしたので、60HzまでFIRフィルターを伸ばしました。 ただしLSB用のフィルターで100Hzくらいまでしか対応できないので、実質は100Hz止まりです。

Send_swon

送信と受信を何回も繰り返していると、時々、送信モードには切り替わるけど。電波が送信されないというトラブルが出続けていました。 この現象は、ラグチューで交信時間が30分以上になるとき、特に頻繁に発生していました。 そこで、この現象が発生した時のSEND SWの信号ラインの電圧変化をモニターする事にしました。 そして、数十回の操作の結果、その症状が現れるときのSENDラインの異常波形をとらえる事に成功しました。 左上のデジタルオシロの波形の時、この送信されない現象が発生しました。 原因はわかりませんが、SENDにした途端、マイナス1.7Vくらいの電圧が発生し、このマイナス電圧で、システムマイコンがラッチアップしてしまう事がわかりました。 対策はこのラインにマイナス方向のパルスを吸収するダイオードを追加する事にしました。ダイオードを追加した結果、このマイナスパルスの先頭値は-0.3Vくらいに押さえられ、実験の最中では、異常現象は発生しません。 多分対策出来たと思えますので、しばらく様子を見る事にします。
 
 

最終配線図 160m_tx_5.pdfをダウンロード

最新のソフトウェアです。 2022年4月28日更新

SSB_generator_160m_2.cをダウンロード

160m_dspSSB_TX_2.cをダウンロード

float_TapFIR_AM_S36k_T301_BPF.hをダウンロード

float_TapFIR_B2R8k_S36k_T201_BPF.hをダウンロード

float_TapFIR_LSB2R8k_S36k_T401_BPF.hをダウンロード

 

INDEXへ戻る

2022年1月23日 (日)

160m SSB 200W リニアアンプ

カテゴリ<SDR> <RFパワーアンプ(リニアアンプ>  [1.8MHz  自作]

160mバンド用のQRP SSB送信機の基本機能が完成しましたので、次は、160mバンド用200Wリニアアンプの製作です。 製作と言っても、すでに完成状態にある40mバンド用200Wリニアアンプに1.8MHzのLPFを追加し、2バンド仕様に改造するものです。

回路図は以下のようになります。

40m160m_200w_amp

40m160m_lpf

いままでの40mバンド用LPFに160mバンドのLPFを追加し、これをリレーで選択します。

Lpf2mhz_200w

左のデータがこの160mバンド用LPFの単体特性です。 使用したカーボニルコアはT68-2で、1mmφ UEWを約30回巻いて、必要なインダクタになるように巻き数を調整しました。  一応アンプ部は広帯域設計ですので、160mバンドもまともに動作してくれるはずです。

この追加改造は終わりましたので、TS-930を信号源として、動作確認を行いました。 

 

その結果、1.85MHzでのリニアリティが全く取れません。 リニアリティが取れない最大の原因は、過去の例から、T2のインダクタンス不足とアンバランスが考えられますので、バイファイラ巻きのトランスT2を巻きなおし、なおかつ、コイルの極性も吟味した結果以下のようになりました。

160m_200w_data

左が、7MHzのリニアアンプの仕様のまま、LPFのみ2MHz用に切り替えた入出力特性です。130Wを過ぎたあたりから、リニアリティが悪くなっています。 

真ん中は、T2の巻線を従来の3.5Tから7.5Tに変更したもので、180Wくらいまではリニアリティを確保出来ています。 そして、200W出力時の入力は3.4Wくらいです。実際の1.85MHzの送信機の最大出力は3.3Wくらいに留めて置く事にします。

右端は、T2を変更した後の7MHzのデータでリニアリティは前回と同じくらいですが、ゲインと最大出力が少し落ち、5W入力でやっと200Wでています。 この原因は伝送線路トランスのインダクタを増やした事により生じたもので、伝送線路トランスの最適インダクタンスが7MHzと1.8MHzとは異なるようです。 7MHzトランシーバーの出力を最大5Wに変更すれば良い事ですので、このままです。

この状態で、高調波レベルを確認してみました。 第2高調波が-44dBくらいしか取れません。 T2のバランスが崩れているかもと、巻線を1.5D2Vに代えてみましたが、芯線と外皮のDC抵抗の差により、かえって悪くなる始末。 念の為とT3のインダクタンスをチェックすると41uHくらいです。1.8MHzでは460Ωくらいのインピーダンスで、実際のインピーダンス50Ωに対して9倍です。 そこで、このインダクタンスを90uHくらいまで増やしてみましたが、高調波のレベルは変わらず、出力のみが落ちていきます。 従い、T3は現状のままとしました。 さらに、T2のバイファイラ巻線はバラツキが大きい為、2本のワイヤーを撚ったものではなく、AWG24ですが、平行コードに変更すると、若干の改善は見られましたが、ケーブルのDC抵抗により7MHzで180Wくらいしか出なくなりました。 T2の巻線を0.50SQに戻し、2本のワイヤーのより密度を1.5倍くらいにし、ターン数は7.5Tにもどすと、7MHzでも200Wをクリアし、やっと-50dBくらいになりました。

この検討の途中でT3がDC直結になっているのが問題かもと考え、0.1uFのコンデンサでDCカットをしてみましたが、第2高調波のレベルは全く変わりませんでした。 実はこの検討のさなかに、操作ミスや不注意によるFET破壊が2回もあり、現在はebayで手配したU$2.20の中華製偽ブランド品の2SK1530を使っていますが、この偽ブランド品は正規品の東芝製より特性が良いという情報がインターネット上に有りました。 そこで、改めて、高調波歪が最小となるアイドル電流を調整すると、なんと、100W出力時、第2高調波が10dBくらい下がるポイントがあります。 しかも、7MHzと1.8MHzでの高調波最小ポイントは一致しています。

結局、第2高調波が多いのは、東芝製に比べて、バイアス電流を少し少なくする事で解決する事が出来ました。

以下の写真は160mバンドを追加した最終状態です。

2band_riner_00

1r8mhz_200w

左のスペアナデータは、1.8MHzにて200W送信時の高調波データです。

第2高調波が-55dB程度で一番大きくなっていますが、新スプリアス規制に対して合格ラインです。

 

2Band化した配線図です。  

160m_PWR-AMP200W_2.pdfをダウンロード

 

 

次に気にしていたIMDの確認です。 700Hzと2300Hzの2-tone信号によります。

160m100pep

160m200pep


Imd_100w_005

Imd_200w_006

左上が100Wpep時、右上が200Wpep時の2-tone波形と3rd IMDです。 100Wpepで-29dBc程度、200Wpepで-23dBc程度。決して良くはありませんが、許容できる限界でしょう。 

200w時のIMDが悪いのは明らかにリニアリティ不足であり、まともに200Wが出力されていない事が原因です。 周波数が低くなればIMDも良くなるのかと思っていましたが、どうもそうではないようですね。 この問題は、少し時間をかけて解決策をさぐろうと思います。
 

160m SSB 送信機 ケースイン へ続く

 

INDEXへ戻る

2022年1月10日 (月)

160m SSB送信機 QRP パワーアンプ

カテゴリ<SDR> [1.8MHz  自作  dsPIC]

1.8MHz用SSB送信機から出力が得られるようになりましたので、これで200Wリニアアンプをドライブできる出力、約5Wが得られるQRPリニアアンプの製作です。

リニアアンプの製作にかかる前に2MHzのLPFを作ります。

2mhzlpfschema

2mhzlpfshumiratiton

インターネット上の計算で求めた2MHz LPFの各定数が左上の回路図です。 その時のシュミレーションデータが右上になります。 

1.9MHzまでフラットで、第2高調波となる3.6MHz付近で,-35dBくらいの7次LPFとしては一般的な特性です。

Im2mhz_lpf_2

Lpf2mhzdata

そして、実際に作られたLPFが上の写真で、その実測データが左の特性になります。

計算のままの定数で作ると、1.8MHz当たりで-2dBくらいになりますので、C2の2660Pを2100Pに変更してあります。 実物の写真でもC2を作る560Pのコンデンサのリードを半田付けせず宙に浮いているのが判ると思います。

この修正を行っても第2高調波付近の減衰は-35dBくらいを確保できていますので、このLPFで進行します。

使用しましたカーボニルコアはT50-2で、0.5UEWを約30回巻いて5uHをめざしましたが、ぴったり5uHになっていません。 また、7uHも実際は7.14uHになっていましたので、計算通りにはいかないようです。 LPFの各シールド壁を貫通する貫通コンデンサは100Pのものですので、それを加算してあります。

コイルのインダクタンスはこれで計測しました。

160mpwramp_sch

160m_5w_ampunit

そして、上の回路図が、5W QRP AMPの構想レベルです。

下の写真がそれを実際に組んだ状態です。

終段は7MHzと同じ、2SK2796Lのプッシュプルで、そのドライバーは手持ちの関係で2SK2382です。 当初ドライバーをトランジスターで検討したのですが、入力インピーダンスが低すぎて、前段のリニアリティが確保しにくい状態でしたので、ジャンク箱の中で眠っていたスィッチング用高出力のFETを使用する事にしました。  このFETはモールドパックの外観をしており、放熱板にビス止めし、無信号時の発熱を防止すると共に、ソースに0.33Ωの抵抗を挿入し、かつダイオードによる熱補正もかけて安定化を図っています。

次にファイナルにダミー抵抗を接続し、特性の確認をおこないました。 結果はNGでした。 最大出力は10Wくらいは得えられますが、とにかくリニアリティがものすごく悪い。 2トーン信号を加えて波形を見ていると、2Wくらいまではなんとか見られる波形をしていますが、それを超えたとたん波形がゆがんできます。 波形が左右で歪むので、原因はフェライトコアと思われます。

調査した結果、ドライバー段のトランスが原因でした。 このトランスのコアは、7MHzと同じものでしたが、今回のドライバーのFETは電流が多くなっている事に加えて、周波数が低いからと、7MHzのとき1次側が2Tであったものを4Tに替えた事が原因で、コアが磁気飽和したものでした。 そこで、磁気飽和がおこりにくくするため、コアサイズをツーランクアップしTDKのHF70BB9.5x10.4x4.9という品番の変更し、巻き数も2Tにもどしました。 しかし、2Tに戻した事により1.8MHzでのロスが生じますので、2次を4Tにするのではなく、6Tとし、かつ全巻線をバイファイラ巻きとしました。 これらの変更を行った結果2W以上でも歪は発生しなくなりましたが、10Wで歪始める状況でしたので、L3のコアをESD-R-28C-1に変更しました。 また、T4のコアは予定通りESD-R-18SDのままですが、1次側を4T、2次側8Tとしたバイファイラ巻きにした結果、クリップ開始は12Wくらいになり、最大出力は16Wとなりました。

160mpwramp2_sch

上の配線図がこれらの変更を加えた最終状態です。 その最終実装状態は下のようになりました。

10wampwtlpf

5wpep

10wpep


左上の波形が5Wpep、右上が10Wpepの波形で、一応まともな波形をしています。 実際に動作するのはMAX5Wの状態です。

5wpwroutwide

左は5W出力時の広帯域スプリアスデータです。 基本波の前後、百数十KHzの範囲にスプリアスが見えますが、問題ないレベルです。 また、高調波は完全に無視できます。

10Wの時も測定していますが、同じ状態でした。

ただ、リニアリティは、前回の7MHz用10Wアンプに比べ、良くありません。

5Wpepのとき、3次IMDが-28dBくらいでした。 このままでは、SDRの名が廃れますので、ON AIRする訳にはいきません。 

 

 

Imd5wpep_3

詳細調べたところ、ドライバーFETの入力インピーダンスがまだかなり低く、その前の2SC2712のアンプで歪んでいることがわかりました。 そこで、パワーアンプの前にマッチングトランスを置いて、インピーダンスマッチングを行った結果、ドライバー段入力部で3次IMDが-37dBとなりました。 しかし、7MHzアンプでは、この段のIMDは-50dBくらいありました。 そして、5Wpep出力時のIMDは左のデータのごとく-28dBしか有りません。 まず、ミキサーに問題がありそうです。 さらに、ドライバーFETに問題があると考え、手持ちの他のFETやトランジスターに変更してみましたが、どの条件でもあまり変化が無い事が判りました。 ただ、7MHzの時と同じようにドライバーをRF電力増幅用の素子に変えると若干の改善がみられます。 終段の2SK2796Lは7MHzのアンプで実績がありましたので、疑っていなかったのですが、試しに、片方のアイドリング電流を変化させると、IMDのデータが変わります。 どうも、7MHzのアンプは、たまたま特性のそろったFETを使用した為、すんなり好成績がえられましたが、プッシュプルで使用するFETの特性をペアでそろえる必要があるみたいです。 

160mimd

 

そこで、全回路を再点検する事にしました。 DSPの出力をOP-AMPでバッファリングしていますが、このアンプの出力ポイントでの3次IMDは、-60dB以上ありました。 従い、ミキサーに問題があるようです。 前回の7MHzミキサーと異なる部分がありますので、定数を7MHzミキサーに合わせました。 R49は7MHz版には無かったのですが、効果がありそうという事で、追加しました。 その結果、Q4の出力ポイントでの3次IMDは-44dBくらいまで改善しました。 

Pwramp02

Imd5wpep


次に、ドライバーのFETはCB用のトランジスター2SC2078に変更しました。 入力インピーダンスが下がりますが、 トランスを追加しましたので、問題なく動作します。 トランジスターにした事により、出力インピーダンスが変わりましたので、T3の巻き数比を2:6から2:4に変えました。 そして、ファイナルのアイドリング電流をIMDがベストになるように調整した結果、5Wpep時の3次IMDが-35dB、5次IMDが-40dBまで改善できました。
7MHzのようにはいきませんでしたが、一応納得できるレベルです。

  

 

 H3e100pct_2

気にしていました、H3Eの変調波形を確認してみました。 左の波形が100%変調のAMから片側のサイドバンドを削除した状態です。

この波形をエンベロープ検波すると、歪だらけになると思われ、実際に音楽を変調してTS-850にて聞いてみると、歪だらけの音でした。 しかし、音声だけならあまり気にならなく、SSBの時より了解度はアップします。 多分、歪んだ高調波のおかげで、サシスセソの音がはっきり聞こえる為に生じる現象と思われますので、キャリアレベルはSSBの最大振幅の半分(電力では1/4)に設定し、もし、QSOの相手局より歪が多いですと言われたら、H3Eであると言い訳する事にします。

 

これまでの全ての変更を網羅した配線図 160m_tx_4.pdfをダウンロード

 

次は200Wリニアアンプの検討になります。

 


160m SSB 200W リニアアンプ へ続く。
 

INDEXへ戻る