2015年1月26日 (月)

160m用ロングワイヤー4

<カテゴリ:アンテナ>

全長40mのロングワイヤーは、その絶対利得が+1.47dBiと実験したアンテナの中では唯一プラスのゲインになりましたが、垂直面内の指向性がほとんど真上に集中し、近隣の局のSは強烈に上昇しましたが、DXの信号はほとんど聞こえない状態でした。 2015年CQWW 160mコンテストの2日目、ゲインはかなりダウンしますが、打ち合上げ角が31度くらいになるT型ロングワイヤーに変えて、再度トライする事にしました。

160m13t9drw

マッチングBOXの中のローディングコイルのタップ位置を選択して1.817MHzに共振させ、トランスの巻き数比を9:5とした時、 最少SWRは1.05くらいでバンド内は1.4以下に収まっています。 アンテナの推定インピーダンスは15Ωくらいです。

ゲインは-6.14dBiとかなり落ちましたが、打ち上げ角は31度となり一応DXも可能な状態になりました。  夕方になるのを待って、ワッチすると、ハワイがQSBを伴いながら599で聞こえます。QSBのピークを見計らって、コールすると「PDP?」と返ってきましたので、数回コールしましたが、結局交信不成立。 その後ワッチを続けると、アリゾナが+10dBくらいで入感します。 ただし、コールしてもQSOは出来ません。 

結果的に、2日目の晩もサハリンと交信できただけでしたが、少なくとも前日のフルサイズLWよりDX向きである事は判りました。 先端がシャックと同じ高さで、我が家の屋根より低いというアンテナでは、DXは無理と諦めることにしました。 このコンテストはJA同志のQSOも得点になりますので、CQ TESTを出すと、ちゃんと呼ばれます。 国内にはそこそこ飛んでいるようです。

160m13t9mmana

垂直面の指向性は良さそうですが、地上高が低いのがやはり致命傷ですかね。

次の日の月曜日、雨の中、アンテナの撤去を行いましたが、再度使用する事はないでしょう。

次に160mバンドにQRVする時は、160m用ロングワイヤー(LW) 1で紹介したスカイドアエレメントを使用した屋根より高いアンテナに再挑戦します。 前回は出力で共振周波数が変わるという問題で投げ出しましたが、対策を考えて再トライです。

160m垂直アンテナ へ続く。

INDEXに戻る

2015年1月24日 (土)

160m用ロングワイヤー3

<カテゴリ:アンテナ>

全長が26mのロングワイヤー(実際はショートワイヤーの呼び名に等しい)は、その高さの割にしては良く飛んでくれました。  しかし、臨時に仮設する条件であれば、最長50mのロングワイヤーを展開できる場所が有りながら、電線の重さの為、張る事が出来ず、26mで妥協していた状態でした。  最近、直径1mmのステンレスワイヤーを市場価格の半額近くで入手できましたので、1.8MHz用フルサイズロングワイヤーにトライしました。

160mlw3

相変わらず、高さは最高8mくらいしか取れませんが、全長50mのワイヤーを用意して、とりあえず張ってみましたら、アンテナの共振周波数は1.6MHz以下となっていましたので、そこからせっせと、ワイヤーをカットし、10mくらいカットしたところで1,817MHzに共振させる事に成功しました。実際のワイヤーの長さは測っていませんので、約40mくらいとしか言いようが有りません。 アンテナアナライザーで確認すると、共振周波数でのインピーダンスは48Ωくらいです。 インピーダンスが高いのはステンレスワイヤーの直流抵抗成分の性かも知れません。なぜなら、40m長のステンレスワイヤーのDC抵抗は60Ωくらいありましたので。 このDC抵抗が原因していると思いますが、アンテナの帯域が従来のアンテナに比べ大幅に広くなっています。アンテナのQがかなり小さくなった為と思われます。 

160mtrns

この状態で直列に1800PFのコンデンサを挿入すると、1.910Mhz付近で同調します。この短縮コンデンサはMMANAで計算しても1800PFと算出されていました。 調整の為、1700PFくらいのセラミックコンデンサに150PFのバリコンをパラ付けして微調整できるようにしてあります。

Qが下がっても、従来のアンテナ以上に飛ぶなら、成功と思いますので、さっそく、アンテナを仮設した晩に1.9MHzでCQを出してみました。 とりあえず5局と交信できましたが双方とも受信状態はあまり良くなかった様でした。

やはり、全長のDC抵抗が60Ωというのは、ダミー抵抗をドライブしているのに等しいと思われます。 

160madj

せっかく入手したステンレスワイヤーでしたが、アンテナワイヤーとしては無理と判りましたので、LANケーブルから取り出した、AWG24のワイヤーに取り替える事にしました。 約7mのLANケーブルがジャンク箱の中にありましたので、この外被をさき、かつツイストされた4組のワイヤーを気長にほどき、全部継ぎ足すと56m近くになりました。 このワイヤーを30mにカットし、12mの1.25SQ KIV線を継ぎ足すと、DC抵抗は3Ωになりした。  このワイヤーを池の上に展開し、1.817MHzに同調するように長さを調整した結果、インピーダンスは、アンテナアナライザーで18Ωと測定されましたので、送信機からの同軸ケーブルを10番タップに接続し、6番タップからアンテナへ接続しました。 SWRは1.05以下です。 1.8MHz帯のバンド全体でSWR1.2以下とかなり広帯域です。  LANケーブル用のワイヤーはその被覆が非常に薄く、同じAWG24でもUL1007タイプよりはるかに軽量です。被覆材料はPE(ポリエチレン)ですから高周波特性も良好です。

このアンテナはコンテストの時だけ臨時に仮設して使用するものですから、架設する度に、共振周波数がすこしアップ、ダウンします。 この微調整用として、整合BOXのすぐ近くでワイヤーを約70cmくらい折り返して束ねて置きます。 共振周波数がずれたとき、この束ねた部分を長くしたり短くしたりして、調整し、いちいちワイヤーをカットしなくて済むようにしてあります。

下に、MMANAでシュミレーションした、水平面、垂直面の指向特性を示します。 シュミレーションでは深さ5mの池の地形は想定されていませんので、これより打ち上げ角が低い事を期待したのですが、実際は期待外れでした。

このアンテナを2015年CQWW 160mコンテストで試してみました。 5エリアの局が+70dBくらいで入感します。韓国も+30dBくらいで入感しますが、いつも+40dBで聞こえるサハリンの局は+20dBくらいです。 +20dBで入感する局とは交信できましたが、それ以下のSの局を呼んでも、CQのコールが一瞬とぎれるだけで、QRZすら返ってきません。 まあ、これが普通ですから、送信能力は諦められますが、HLの局と交信している7や8エリアの局すらあまり良く聞こえません。 どうやら、打ち上げ角がシュミレーション以上に真上へ出てしまったようです。

160mmmana

結局、このアンテナは1晩で不合格の判定を行い、どう改善するか思案しておりましたら、飼い猫が走り回り、マッチングBOXを引きずった為、ワイヤーが切れてしまいました。 猫の遊び場に設置したのがいけなかったと反省しながら、午前中に撤去しました。 

160m用ロングワイヤー4 に続く

INDEXに戻る

2014年12月29日 (月)

アンテナアナライザーとインピーダンス

<カテゴリ:アンテナアナライザー>

アンテナアナライザーは、アンテナのSWRやインピーダンスなどを、送信機無しで簡単に測定できる為、アンテナ自作派にとって手放せないアイテムであります。 最近のアンテナアナライザーは、SWRやインピーダンスを表示した上で、リアクタンスの表示もできるのが多くなりました。  しかしながら、アンテナアナライザーは、決してアンテナのインピーダンスやリアクタンスを表示しているものでは無いという話です。

アンテナアナライザーを使用している方から質問がありました。 周波数を145MHz にしておき、100Ω のダミー抵抗をつないだのにインピーダンス表示が100Ω にならない。 リアクタンスはゼロのはずなのに、ゼロを表示しないというものでした。

Dammy50

この問題は、このブログの「同軸ケーブルの切り出し」でも触れましたが、インピーダンス検出位置 (専門的には基準面と言うそうです) と実際に接続されたダミー抵抗との距離に関係します。 インピーダンス検出位置に100Ω のダミー抵抗が置かれている場合、検出値は正しく100+j 0Ω となりますが、距離が有る場合、その距離と測定周波数の波長の関係で異なってきます。 アンテナアナライザーにダミー抵抗を装着する場合、検出部とダミー抵抗の位置は、おおかた5cm 近く離れており、これが大きく影響するものです。

下に、ダミー抵抗、測定位置、測定位置から見たダミー抵抗の電気定数を計算する式を示します。 ダミー抵抗はMコネクターの同軸ケーブル接続側の先端に、チップ抵抗がハンダ付けされた一般的な校正用ダミー抵抗です。 測定位置はアナライザー内部のブリッジ回路が存在する機械的な位置です。 それらの間にd[m] の距離があり、かつ、その間の伝送路の特性インピーダンスZoを50Ωとします。 今回のダミー抵抗はd=56.5mm のものを使いました。 また、この伝送路の短縮率は0.67 であったと仮定します。

Aaz1

 赤枠で囲まれた計算式が測定位置から見たダミー抵抗のインピーダンス計算式で、複素数扱いとなります。

下の表は、この計算式をエクセルの中に埋め込み、計算した結果です。

ダミー抵抗は純抵抗の100Ω でしたが、計算結果は83.9Ω しかありません。 また、ダミー抵抗には、リアクタンス(Xx) は含まれないのに、計算結果には30.8Ω の容量性リアクタンスが含まれています。 そして、抵抗とリアクタンスを合成したインピーダンスも90Ω 以下となっています。

周波数に関係なく、d=0 なら計算したインピーダンスはダミー抵抗に一致します。 また、周波数が低くなると、計算値はダミー抵抗の値に近づいていきます。 さらにダミー抵抗が50+j0 の場合、周波数やd に関係なく計算値は常に50+j0 となります。 そして、50+j0以外の場合、dを色々変えていくと、リアクタンスの極性も反転します。 もちろん、実際の測定結果も数値がぴったり一致しないまでも、同じ傾向を示します。

これらを実感していただく為に、計算式を埋め込んだエクセルファイルを用意しましたので試してみて下さい。

インピーダンス計算エクセルファイルをダウンロード

ところで、今回は測定位置からダミー抵抗までの短縮率(速度係数)を仮に0.67と置きましたが、 実際のところポリエチレンを完全充填している訳ではなく、半分以上が中空となっていますので、短縮率は0.67より大きな数値と考えられます。 しかし、使われているコネクターがインピーダンス無管理のMコネクターですから、基準面からダミー抵抗までの線路の特性インピーダンスは30Ωより低いと予想され、実際は計算値以上に誤差が大きくなるようです。

今までの話は、アナライザーのブリッジ回路の位置とダミーの抵抗との距離の話でしたが、これが、同軸ケーブルで接続されたアンテナであった場合、同軸ケーブルの長さは最低でも、コネクターを含めて10cm 以上はあるでしょうから、アナライザーが表示した数値は決してアンテナのインピーダンスではないという事がお判りでしょう。  アナライザーは常にブリッジ部分のインピーダンスを計測しているだけなのです。

同軸ケーブル越しに測定した抵抗やリアクタンスを含むインピーダンスが50+j0 で無かった場合、アンテナのインピーダンスは50+j0 では無いとはいえますが、いったいいくらなのかは不明なのです。 仮に156+j0 と表示されても、Rの部分が50では有りませんので、j0 だからこの周波数で共振しているという事も言えないのです。 この事は、アナライザーがリアクタンスゼロを検出しても、アンテナが共振状態であるとは限らないという事ですから、アナライザーのリアクタンス表示のみで共振周波数を判断してはいけないという事にほかなりません。 

アンテナ直下で、同軸ケーブルの長さが50cm 以下などのように、極力短い状態で測定した場合、HFの比較的低い周波数に於いては、かなり近い値を知る事はできますが、VHFやUHFでは、実態とは全く異なる数値を表示している事になります。 ちなみに、50cm の長さの同軸ケーブルでアンテナに接続した場合、前述の145MHzで生じた計測誤差が14MHzでも起こります。

同軸ケーブルの長さを正確に測定周波数のλ/2の整数倍に設定してやると、アンテナアナライザーはアンテナのインピーダンスを表示しますが、それは、波長がぴったりλ/2の整数倍のときだけです。 アンテナアナライザーの周波数を少し変化させたとたん、実際値よりずれてしまいます。 これは、同軸ケーブルの長さをこまめに変えられないというアナライザーとは関係ない事情によります。

このような説明をすると、アンテナアナライザーなど、全く役に立たない道具にしか見えないようですが、実はSWRだけは、同軸ケーブル越しでも、ちゃんと、読み取る事ができます。

SWRを表示する際に、アナライザーが測定したインピーダンスや、Sパラメーターから反射係数を求めて、求めた反射係数からSWRを算出して表示している場合、同軸ケーブルの長さに関係なく、アンテナのSWRを表示します。 実際は接続する同軸ケーブルにロスがありますので、表示されるSWR値は実際値より小さく、すなわち良く表示されます。 しかし、長さが50cm くらいの同軸ケーブルの場合なら、435MHzでも大きな誤差なくSWRを知る事ができるわけです。 

そして、反射係数を直接求めず、ブリッジの不平衡電圧に比例した数値からSWRを表示するほとんどのアンテナアナライザーも、SWRが大きい場合、多少の誤差はありますが、SWRが1.0 に近づくほど誤差が少なくなり、ちゃんとアンテナのSWRを表示します。 

この理屈を確かめるには、この記事の中でダウンロードしたインピーダンス計算エクセルファイルのZx とZi のR+jX を、インピーダンスからSWRを計算できるエクセルファイルに代入すると、Zx もZi も、同じSWRになる事から理解できます。 (スミスチャートならもっと簡単に理解出来ます。)

Aaswr1

上の表は、145MHzで100Ωのダミー抵抗をアナライザーが測定した時のR=83.9とX=-30.8をSWR計算シートに代入したものですが、計算結果はVSWR=2.00となっています。 もともとのダミー抵抗のSWRは100/Zoで2.0ですから、同軸ケーブル越しに測定したSWRでもダミー抵抗、すなわちアンテナのSWRを正しく測定している事になります。

いくら同軸ケーブルを短くせよと言っても、高さ10mに張ったダイポールアンテナの給電点にアンテナアナライザーを持っていくのは至難の業です。 ここは現実的に10数m以上あるかも知れない同軸ケーブル越しに、シャック内でSWR最少周波数を確認しても、共振周波数を知るという条件だけなら全く問題無い訳です。

時々、同軸ケーブルの長さを変えると、SWRが変わるという話を聞きますが、それはSWR計のインピーダンスや同軸ケーブルやコネクターが50Ω でなかったり、SWR計とアンテナの途中にあるコネクタの接触不良や、大きなコモンモード電流が同軸ケーブルに流れて正確にSWR計が動作しない場合や、リアクタンスが含まれたとたん、まともにSWRを計測できないSWR計のせいです。 これらの解説はインターネット上に沢山存在します。 もし、同軸ケーブルの長さを変えたときSWRが大きく変わったら、アンテナを調整する前にこれらの対策が必要ですが、コモンモードチョークを追加する以外手の打ちようがありません。その時は、一番悪いSWR値がアンテナのSWRであると考えた方が気が楽になります。

また、同軸ケーブル越しに表示されたアナライザーのインピーダンスはRやXを含めて当てにしないことですね。 すでにお判りのように、同軸ケーブルの長さが1電気波長の1/100を超えると、ZやRに無視しにくい誤差が含まれますが、Xに至っては、1電気波長の1/1000を超えた当たりから無視しにくい誤差が含まれるようになります。

市販されているアンテナアナライザーに付いているRやXの表示は、コイルやコンデンサをMコネクターに直接接続し、せいぜい10MHz以下の周波数で利用したり、3.5MHz以下の周波数のアンテナの給電部に、短い同軸で直接接続して利用するくらいが、ベターと思われます。 また、例え10MHz以下の周波数でも抵抗とコイルを直列に接続した回路では、周波数を上げていくと、Xは当然上昇しますが、RもXの変化より小さいですが、上昇します。 これは、アナライザーがコイルの高周波抵抗(表皮効果による抵抗)を検出して、本来の抵抗と合計した値を表示している為です。

ブリッジ部分と校正用抵抗またはアンテナまでの距離と、その間の速度係数や特性インピーダンスは機種によってマチマチです。複数のアナライザを使い、同じダミー抵抗やアンテナを測定した場合、ダミー抵抗やアンテナが純抵抗の50Ω以外であった場合、表示されるインピーダンスやR、Xは全て異なってきます。 一致するのは、周波数とSWRだけでしょう。

あるメーカーが「アンテナアナライザー」ではなく、    「SWRアナライザー」とか、「スタンディングウェーブアナライザー」と呼んでいましたが、もしかしたら本質を突いた呼び名かもしれませんね。

補足です。

プロが使うVNA(ベクトル・ネットワーク・アナライザー)などの測定器の場合、同軸ケーブルの長さをキャンセルして被測定回路の正しいインピーダンスを表示できるような機能が付いたのが当たり前です。専門的には基準面の移動を行うと言うそうです。 アマチュア用のアンテナアナライザーでも、この接続ケーブルの影響をキャンセルできる機能が付いたモデルもあります。  ただし、このキャンセル機能を有効にする為に、タワーや屋根の上で、アナライザーの校正を行うというのは、かなり面倒です。 

プロ用、アマチュア用を問わず、同軸ケーブルの片方にアナライザーをつなぎ、アンテナに接続されている方の同軸コネクターを外した後、アンテナの代わりに、50Ωのダミー抵抗、0Ωのダミー抵抗を接続した状態、及びオープン状態で校正動作を行わせます。 校正動作は自動で行なわれますが、アンテナから同軸ケーブルを外して、ダミー抵抗を付けたり外したりは、自分でやらねばなりません。 もし、アンテナの給電部を手の届かないところまで上げてしまっていたら、アンテナを一度降ろすか、高所作業車を借りてくるか考えねばなりません。

この記事の中でダウンロードしたインピーダンス計算エクセルファイルの中に「校正原理」というシートがあります。 このシートには、アナライザーが検出したRiとXiからアンテナのRxとXxを逆算で求める計算式が埋め込まれています。 接続用の同軸ケーブルの長さをキャンセルさせる場合は、この計算で求めたRxやXxをベースに、同軸ケーブルのロスを加味した値をグラフ表示している訳です。  グラフで表示する理由は、Xiのリアクタンスの極性を判定するにはグラフデータが必要だからです。   

例題ではd=0.0565という短い距離が設定されていますが、実際は0.5m以上が必要な場合が一般的です。 また、そこそこの精度を得たいならSF106タイプの同軸ケーブルで長さは3波長くらいが限度です。 5mの長さの3D2Wで校正した場合、300MHzくらいから周波数に対してSWR値が波打ちどこがSWR最少周波数か判りにくくなります。

なお、キャンセル機能が無いモデルでも、この記事に取り上げた技術情報は取説の中で何回も説明されています。  もちろん、OM諸氏により翻訳された日本語バージョンでも説明されています。

理屈は難解ですが、使い始めると手放せないアンテナアナライザの自作はこちら

INDEXに戻る

2014年11月12日 (水)

アンテナアナライザーと外来電波(夜になるとSWRが上がる)

<カテゴリ:アンテナアナライザー>

アンテナアナライザーという便利な道具を常用していると、思わぬトラブルを経験します。 7MHzのダイポールを昼間、7050KHzでSWR1.1に調整しておき、夜、再度確認するとSWR1.8くらいまで悪化していました。しかも、かなり指針が揺れます。 暗いのでアンテナの再調整は翌朝行うこととし、翌朝、再度SWRを確認すると1.1になっており問題なしです。 アンテナの状態が晴れと雨では違っても、昼と夜で変化するという話は聞いた事は有りません。

原因は、またも「北京放送」でした。

アンテナアナライザーをアンテナに接続した状態は、回路的に見ると、同調回路のない鉱石ラジオそのものです。強力な電波がアンテナから侵入すると、アナライザーの発振出力と同じくらいかそれよりも大きな信号がインピーダンスやSWR検出用ダイオードに加わります。 この為、SWRやインピーダンスが大きく表示されてしまいます。 特に7MHz帯の北京放送はハムバンドに近いだけでなく、鉱石ラジオがガンガンなるほど強力です。 7MHzに同調したダイポールですから、其処らへんに張ったロングワイヤーなどに比べたら、はるかに大きな信号で受信できるのでしょう。

また、なにも7MHzの北京放送だけではなく、中波放送が1.8MHzのアンテナ調整に邪魔になるとか、FM放送局が144MHzのアンテナに混入し測定不能になるとか、すぐ近くで誰かが電波を送信したとか、アンテナアナライザーの使用を困難にしている現象が世界中で起きているようです。

この問題は、ブリッジ方式のアンテナアナライザーにとって宿命的であり、妨害を与える電波を止めるしか有りません。 しかし、放送局の電波は止められませんので、アナライザー内部の発振器の出力を上げ、検波回路の感度を悪くし、外来電波の影響を少しでも緩和する手段と、妨害電波用のトラップ回路をアナライザーとアンテナの間に入れるくらいの対策案しか有りません。

トラップの場合、FM放送がHFアンテナの調整時邪魔をする場合、効果が有っても、7MHzの北京放送や、1.8MHzの中波放送はトラップを入れただけで、測定不能なほどSWRは異なってしまいます。

一方、発振出力を上げる案は、電波法という法律が前に立ちはだかります。 アンテナアナライザーを送信機として申請し許可をとればいくらでも出力をアップできますが、使用可能な周波数範囲はハムバンドに限定されます。 アンテナアナライザーの最大の強みはハムバンド以外も測定できるという事ですから、発射される電波は許可を要しない著しく微弱な電波の範囲でなければなりません。

日本の電波法では、この許可を要しない電波の電界強度を以下のように定めています。

電波の発射点から3mの距離において

322MHz以下 500μV/m以下

322MHz - 10GHz 35μV/m以下

この限度値はサービスエリアが半径20~30mくらいの無線局を想定して設定されている模様で、例えば、半径1500mくらいの地点でも、明瞭に受信できるような送信設備の場合、あきらかに法令違反になる訳です。 ただしこの規定にかかわらず、測定器としての発振器に定義される装置には後述のごとく出力の規定が有りません。

Aapowertest

そこで、代表的なアンテナアナライザーの出力レベルを調べてみました。調べたのは私ではなくQSTの執筆者です。また、各アナライザーの取説には、その出力レベルを明記してありますが、発振器の出力レベルだったり、アンテナコネクター端子の解放電圧だったり、50Ωで終端した場合だったりしますので、左の等価回路に示すようにスペアナによる50Ω終端時のレベルとして測定されていました。

Aapowerlist

電波法施行規則の第6条で、免許を要しない無線局として、「標準電界発生器、ヘテロダイン周波数計その他の測定用小型発信器」と定義され、この小型発信器の出力についての制限は有りません。 無線局は送信機とアンテナで構成されますので、アンテナアナライザでアンテナの測定をする事自体は違法ではありませんが、すでに行われている無線業務に妨害を与えてはいけません。 空中に放射される電波は、アンテナの形態で大きく変わります。 QRPPを実践されている方なら10mWもあればかなり遠方と交信できる事は当たり前ですから、パワーの大きいアナライザーの場合、テストするアンテナや周波数は十分注意が必要でしょうね。

しかも、アナライザの出力を大きくしたとしても、CAA-500とFG-01の電界強度換算値は18dB程度しかありません。 短波帯のQSBの山谷の差、平均40dBなどに比べたら、ほとんど効果は期待できない状態です。

外来電波によりSWRを正確に測れない場合、許可を受けた送信機とSWR計で測定するのが一番のようです。周波数は許可を受けた範囲に限られますが、出力は北京放送や中波放送に絶対に負けないレベルまで上げる事ができます。

アナライザーの機種が変わったらSWR値が変わったとか、時間や季節でSWRが変わるなどの症状が確認されましたら、外来電波の影響を最初に疑ったほうが解決が速くなることでしょう。

INDEXに戻る

2014年10月28日 (火)

ATUの自作:LCD交換

 <カテゴリ:オートアンテナチューナー(ATU)の製作

ATUのエバレーションを実使用状態で継続していますが、デバッグに使っているLCDでトラブルが発生しました。

Atulcd4

このLCDはAQM0802Aという品番で、ベランダに設置したATUの基板に貼り付けてあったのですが、4週間くらいしたら、LCDが表示しなくなりました。I2Cの回路はまともに動いていますが表示が出ません。 DC/DCの出力をチェックすると、6V以上ある電圧が3Vしか有りません。 発振は停止はしていませんが、昇圧しきれないようです。

ベランダから部屋に持ち帰り、テストすると、ちゃんと表示します。電圧が違うのか?コンデンサの容量が違うのか? 色々検討しましたが、原因は判りません。 部屋のなかで正常動作している状態のままで、ベランダに出てみました。すると、数秒もしない内にLCDの表示が消えます。一度消えたLCDを部屋に戻しても表示は復帰しませんが、電源OFF/ONを行うと、表示は戻ります。  

この、部屋でOK、屋外でNGは何度も再現されますので、原因は光しか有りません。ちなみに、ATUを収納した緑色のコンテナBOXに蓋をして、蓋の隙間から暗くなったLCDを見ると、正常に表示しますが、蓋を取り去ると消えてしまいます。 もともと不安定なDC/DCでしたが、LCD表面に光が照射されると、内部状態が変わるのでしょう。

結局、このLCDは取り外し、別のLCDに交換する事になりました。

交換したLCDはI2CインターフェースのACM1602N1という秋月で取り扱っているLCDです。表示が8桁2行から16桁2行に増加しましたので、かねてより気にしていましたCM結合器のDC出力をADで読んだ値も表示させる事にしました。

Atulcdn1_2

左の3ケタ数字がVCの角度データ、上がVC1、下がVC2です。 次の「7」はタップ番号。真ん中の4ケタ数字がCM結合器のDC出力をADで読んだ値です。上がVfwd,下がVref。 右側の上4ケタがSWRを100倍した数値。 下が周波数で単位はKHzです。

  いままでは、出力を大きくするとSWRが悪化していました。 CM結合器のDC電圧をデジタルテスターで測り、これをベースに計算したSWRは1W出力より10W出力が悪くなりますが、10W出力時と40W出力時のSWR値は変わりません。 しかし、ADが変換した数値から計算したSWR値は0.2くらい悪化します。 

原因は、AD変換回路のサンプルホールド回路の初期充電時間かも知れません。 この充電時間を確保する為、ADのチャンネルを選択してから、10マイクロ秒間のウェイトをかけていましたが、試しに、このウェイトを50マイクロ秒に変えてみました。すると、10W出力時と40W出力時のSWRの差は0.07くらいに収まりました。  

また、大きなアナログ信号をAD変換した後、小さなアナログ信号を変換する場合、前回の計測時の電荷が残っている可能性もあります。  そこで、今まで、Vfwdを測定した後にVrefを測定していましたが、Vrefを先に測定し、Vfwdを後に測定するように変更したところ、10Wと40WのSWR値の差はゼロになりました。

1W時と10W時のSWR差は検波に使っている1N60の非直線性によるもので、気にする必要は有りません。

当面は、不具合が発見されるたびに、LCDの表示を変更しながらエバレーションが続きそうです。

このマイコンのソフト開発はマイクロチップが無償で提供しているMPLAB IDEという開発環境と、PICkit3と呼ばれる書き込みアダプターを使い行っていますが、今回使用しているマイコン「16F1939」の場合、最初のイニシャライズ時、マイコンIDの検出を失敗し、かなりの頻度でエラーになります。 

原因が判らないまま、PCを立ち上げ直したり、アプリの立ち上げタイミングとUSB認識のタイミングなどを取って、かろうじて開発環境を維持していました。 最近、このエラー頻度が高くなり困っていましたら、インターネット上で同じような問題で困っていた記事を見つけました。 記事によると、PICkit3から供給する電圧を5Vではなく、少し下げてやればエラーになる確率が減るという情報です。  さっそく、5Vの電圧を4.6Vまで下げてみました。  すると、全くエラーが発生しなくなりました。

その後のATU動作改善はこちらへ続きます。

INDEXに戻る

2014年9月25日 (木)

バリコン式ATUの実装

カテゴリ:オートアンテナチューナー(ATU)の製作

20mの長さのある同調フィーダーの先に、現用の18メガ用スカイドアと7メガ用垂直DPをつなぎ、シャックの中でテスト運用した自作のATUは快適に動いてくれました。 ただし、20mの同調フィーダーはノイズの受信と不要輻射の面から常用は不可ですので、プリセットMTUを置いてあるベランダにATUを移し、そこまでは同軸で給電する事にしておりました。 

このATUをプリセットMTUの所に移す為に、プリセットMTUをサイズダウンして防水BOXの中に隙間を確保し、ATUを収納できるように改造しました。ATUの動作確認以前の処理事項として、この改造したプリセットMTUが全バンド正常に動作するようになりましたので、ATUの本格稼働に向け動作テストをする段階までこぎつける事ができました。

Atu140926

右下のアルミケースで覆われた箱がATUです。左側の基板はプリセットMTU用のデコーダーで、シャック内のコントローラーからのATUコマンドを中継しています。

このATUの動作テストを行う前に、プリセットMTUの調整も行いましたが、プリセットMTU作り変え にて紹介の通り、ハイパス型Tタイプのアンテナチューナーでは整合しないバンドがかなりあります。 ATUはハイパスTタイプですので、心配しながら、チューニングテストを行うと、3.5、3.8、14,18,24メガが整合しません。 

ATUをリグの近くに置き、アンテナまで20mくらいの同調フィーダーで接続した場合は、全バンドうまくいってましたので、同調フィーダーの長さを調整すると、整合するとは思います。 しかし、現在の同調フィーダーの長さで、せっかくMTUが正常動作している状態ですので、ATUもこの同調フィーダーの長さのままで正常動作させる事にします。 

MTUの整合検討で多くのバンドが整合しない原因は、 MTUのコモンラインの浮遊容量でしたので、ATUを接続する時は、入出力にそれぞれリレーを設け、MTUからGNDを含め完全に分離する事にしました。 その結果、3.5,3.8,18メガ以外は整合するようになりました。

3.5と3.8メガのバンドが整合しない理由は、バリコンの回転が速すぎて、整合ポイントをスキップしてしまうのが原因のようです。 バリコンの回転スピードを超スローにして、数分以上の時間をかけてSWR最少ポイントに追い込んでいくと、このバンドもSWR1.5以下に整合します。 しかし、それでは使い物になりませんから、バリコンが回転中でも5m秒おきにSWRをチェックするようにしました。 これで、従来より10倍くらいの密度でSWRのチェックする事になり、収束するようになりました。

しかし、1分以上経っても整合できない事もしばしば発生します。 これは、バリコン最少容量状態から、小刻みに、VCを回し、SWRが規定以下になるポイント探す時間と、SWRがかなり下がったのに、何らかの原因でSWR20以上の状態に陥る場合です。 対策として、整合の為のサーボ動作を開始するSWRの上限を20から50に修正しました。 

その上で、SWRが10以上ある時は、モーターの駆動時間を従来の2倍にして、SWR10以下になるまでの時間を約半分にしました。 また、整合途中でSWR5以下まで収束したら、その時のVCの角度を記憶させる事にしました。 この後、なんらかの原因でSWRが50を超えても、最初からやり直すのではなく、SWR5以下になったバリコン位置から再スタートさせます。 

また、20秒以上たっても整合しない場合、SWR3以内なら一旦整合したとして停止させ、そこから再度整合をスタートさせると、ほぼ100%の確率でSWR1.5以下に収束します。  

一度整合してしまえば、その時のタップ番号やバリコンの角度を記憶しておりますので、プリセットMTUと同感覚で使用できます。

Atuswadd

ただし、18メガはなかなか整合しません。SWR3くらいまでは比較的簡単に収束しますが、それより、なかなか低くなりません。 原因を確かめる為に、ATUをマニュアルで動かす機能を追加しました。VC1もVC2もキーを押している間だけ、CW,CCW方向に回転できるようにしました。 このマニュアル機能を使い、手動で整合させようとしますが、まだうまくいきません。 このバンドだけは、後日、対策方法を考える事にします。

マニュアル動作が可能なATUの配線図 ATU-VC6.pdfをダウンロード

Mtu_cont1

また、ATUのSWR計がSWR1.4と表示しているのに、シャックの中にあるSWR計はSWR2と表示して、レベルが合いません。  通常はアンテナ直下のSWR計より、リグの近くにあるSWR計の方が良く表示されますが、これは逆の現象です。 

ATUをリグの近くに置き、短い同軸ケーブルで接続すると、このSWRの数値差は出なくなります。 コモンモード電流が悪さをするとこのような現象がでる事は判っていますが、今回も同じ理由なのかは判りません。 今後、使用しながら改善する事にします。

--------------------------------------------------------------------------

18メガがなかなか整合しない原因が判りました。コイルのQが高過ぎて、バリコンが非常にクリチカルになり、モータードライブのバリコンでは合わせきれないのが原因のようです。 ギアのバックラッシュを完全に無くすると、この問題は発生しないのでしょうが、それは、無理ですから、別の方法を考える事にします。 

NT-636がクリチカルながらも整合する理由はコイルをショート状態で使っているのが影響しているのかも知れません。ショート状態とは、タップ番号0のタップはいつもGNDに接続してあるという意味です。このような使い方では、コイルのQが下がり、チューナー内のロスが増えます。 NT-636も一度、この0番タップのGNDを外した事がありましたが、高圧が発生し、スパークが起こりますので、また元に戻した経緯があります。 

試に、このATUのコイルの0番タップを常時GNDに接続してみました。すると、18メガがちゃんと整合するのに加え、他のバンドも使用可能な帯域幅が広がりました。 

また、2種類のSWR計の読みが一致しない、もうひとつの原因は、SWR計の調整の仕方そのものに有る事もわかりました。 SWR計はリアクタンスが含まれたとたん誤差が大きくなる事は、SWR計とリアクタンスの記事で紹介しましたが、SWR計の調整のとき、純抵抗のダミーロードだけで、VREFやVFWDのキャンセル調整を行うと、CM結合器のトリーマーの位置がどうしてもブロードになります。 このトリーマーの調整を実際に共振している50Ωのアンテナで行い、2機種ともSWR最良になるようにトリーマーを調整してやると、共振周波数以外では、SWRの表示に差異がでますが、SWR最少となる共振周波数はかなり一致するようになりました。 

しかし、21MHz以上のバンドでは、一致したとはまだ言えません。 そこで、ATUの直近にあるコモンモードチョークをFT240#43のコアの物に交換し、いままで使っていたFT140#43 2個によるチョークはリグの近くにあるSWR計の出力側に移しました。 この結果、SWR最少周波数が完全に一致しないまでも、ふたつのSWR計の指示はかなり近くなりました。 

Mtu141030d

チューナー内のロスはコイルのQが少し下がった関係で、増加したと思われますが、一応全バンド使えるようになりました。 

ところで、このATUはなかなか整合しないような印象を受けたかもしれませんが、それは、このATUを最初に使う時だけで、一度整合してしまえば、以降は2秒以内で実用SWR域にプリセットされます。 ソフトの開発中は、プログラムを書き換える度に、プリセット用のVC角度がイニシャライズされますので、なかなか収束しないように見えるものです。

このマルチバンドアンテナシステムは10MHz以下のローバンドは7MHz用垂直ダイポールに整合させ、14MHz以上のハイバンドは18MHz用スカイドアに整合させますが、間違って垂直ダイポールに14MHz以上のハイバンドを整合させたり、スカイドアに10MHzや7MHzが整合させてしまいます。

当然、このような想定以外の整合では、アンテナの性能は著しく悪くなります。ATUの場合、この間違った状態でも、整合が成功すると、タップ番号やバリコン角度を書き換えてしまいます。 間違いに気づいて、正しいアンテナで整合させようとすると、以前の正しい整合情報が書き換えられており、また一から整合ポイントを探す事になってしまいます。 

そこで、どのアンテナエレメントを選択しているかをATU側でチェックし、測定した周波数と比較して、エレメントが間違っている場合、エラー警告を出し、整合動作を開始しないようにしました。 この措置で、アンテナ切り替えミスにより、せっかくのATUプリセット情報が書き換えられる事がなくなりました。  しかし、時々、このプロテクタープログラムを入れた事を忘れてしまい、エラーになる理由が判らず、悩む事もあります。 慣れるまで大変です。

このATUが真価を発揮するのは雨の日です。 その効果はすでに実証済みです。 しかし、まだまだ、使い勝手はMTUの方が高い状態です。当面はMTUのサブとして使う事になりそうです。

ATUのPICマイコンによるSWR計の指示とシャックの中にある自作のSWR計の指示に差がある事はすでに触れましたが、この本当の原因が判りました。当初、プリセットMTUのBOXまで同軸ケーブルで接続された後、160mバンド用の延長ケーブルに接続できるように、リレーで回路の切り替えをやっていましたが、このリレー回路は普通のワイヤーで立体配線されたインピーダンスは完全無視の回路でした。 

このリレー回路がハイバンドでSWRを悪化させ、その結果、ATU内のSWR計が21MHzで1.02を指示しても、手元のSWR計は1.2と表示してしまう事が判りました。 このリレー回路を廃止し、ATUに同軸ケーブルを直結すると、ふたつのSWR計の指示差は無くなりました。 

同じベランダで長年使っていた2m用のJポールを廃止しましたので、このアンテナ用の同軸ケーブルが余りました。 これを160mに専用で使用する事にすることで、問題は解決です。 

ATUの整合条件はかなり変わり、今度は21MHzが整合しなくなりました。 原因は、回路のQが高くて、真の整合ポイントを通り越し、VC1もVC2も最大容量に収束してしまうものです。 マニュアルモードで真の整合ポイント付近でSWRが1.5くらいに持っていき、そこから自動整合を開始すると、SWR1.1以下に整合します。 

このテストを何度も繰り返している内に、バリコンの最大容量250PFは大きすぎるという結論になりました。ギアのバックラッシュをもっと少なくするか、バリコンの容量を最大150PFくらいまで落とすなどの対応が必要なようです。

たちまちは、これらの対応を実現できませんので、当面は、ソフトを書き換えたら、また最初の整合ポイント探しはマニュアルで行うしかないみたいです。

ATUの接続方法を変更した配線図ATU-VC9.pdfをダウンロード  (LCDの変更も含まれています。)

ATUの自作 : LCD交換 に続く。

INDEXに戻る

2014年9月21日 (日)

プリセットMTU作り変え

<カテゴリ:マルチバンドアンテナシステム>

自作ATUの製作が進行中なので、このATUを防水BOXに収納する為、個々のMTUのサイズダウンを行い、ほぼ同サイズの新しいコンテナBOXを用意し、全バンドのMTUを作り変える事にしました。

 

Mtu140926

Mtu2_c

コンテナBOXはアステージのNTボックス#22で、従来より横幅が10mmくらい広くなりました。この中に、幅を約8mm切り詰めたMTUを16台収納可能なように配置し、右側の一番下にバリコン式ATUを収納しました。 このATUについては、バリコン式ATUの実装 を参照下さい。

新作したプリセットMTUは従来のMTUをサイズダウンして収納するだけのもので、目新しい細工は考慮しませんでしたが、いざ実装の段階になると、技術的な問題が続出し、従来のMTUを大改造する羽目になってしまいました。

このアンテナシステムをMMANAでシュミレーションした結果は、インピーダンス値は低めに出るものの、共振周波数はかなり合致していました。 しかし、TLWによるアンテナチューナーのシュミレーションと実際のMTUの設定定数はローバンドはともかく、ハイバンドは全く一致していない状況でした。 そこで、このBOXを新作したのを機会にBOX内の電気定数を調べてみる事にしました。 その結果、各MTUをリレーに接続するコモンラインの容量が50PFもある事が判りました。この50PFはTLWのシュミレーション定数のひとつである「Output Stray Capacitance」に相当します。通常デフォルトで10PFと設定されますが、実は10PFではなく50PFであったという事です。そして、この容量を50PFにすると、ハイパスTタイプのチューナーでも整合する定数が得られますが、実際は整合しないというバンドが続出します。 その原因はMTUの入力側の浮遊容50PFの存在です。 この入力側の浮遊容量はTLWでもシュミレーションの対象ではなく、計算上は常に0PFとして扱われます。 従来は、これが原因で整合しないチューナーを同調フィーダーの長さを変えてごまかしてあったという事が判った次第です。 このごまかした長さは2m分でしたが、これが、天候で整合状態をころころ変化させる原因のひとつにもなっていました。 MTUを作り替えたついでに、この不安定となる2mの追加フィーダーを廃止し、アンテナから垂直に引き降ろした約4.5mのみで整合させることにトライしました。

このアンテナの給電点付近にはフロートバランが挿入され、実測したインダクタンスと浮遊容量と前述の50PFを加味してMMANAでシュミレーションしても、共振周波数はほぼ一致しますが、MMANAから算出したインピーダンスを元にシュミレーションしたチューナーの回路では、全く整合できません。従い、シュミレーションを当てにせずに整合回路を模索する事になります。 14メガから28メガまで全バンド、ハイパスTタイプでは、いくらやってもSWR2以下になりません。これらのバンドについては、ハイパスTにこだわらず、整合可能な回路方式を含めて検討する事にしました。

Mtu2_b大きなコイルは使えませんので、インダクタンスが4μH以下のコイル1個、最大容量150PFのバリコン2個で変形したチューナーを空中配線で作り、うまくいきそうになったら、改造したコイルと、手作りポリバリコンに置き換えるという試行錯誤を行った結果、全バンド整合可能になりました。

左は各バンド毎のチューナーの基本回路です。コイルはカット&トライですが14MHz以上のバンドでは、最大でも直径18mmのボビンに21ターンとなっています。

80m,75mバンドは従来通り、ローパス型、パイマッチタイプです。このバンドは容量性リアクタンスがかなり大きいので、ハイパス型を使うと内部ロスが増大します。 このパイマッチ式チューナーのロスは50%くらいです。  送信機側のバリコンは2000PFを超えますので、大半は固定コンデンサで、ポリバリコンは微調整するだけとなります。雨が降ると、この微調整の範囲を超えてしまいます。

40m及び30mバンドは、ハイパス型Tタイプです。これらのバンドでのチューナーロスは5%から15%くらいです。リアクタンスは30mで+300Ωくらいになっています。 調整はかなりクリチカルです。天候により大きく整合状態が変わります。

20mバンドは50Ω以下の抵抗成分と、+200Ωくらいの誘導性リアクタンス成分になります。基本形はローパス型Lタイプですが、出力側でVCによる調整を行っています。 この回路ズバリの挿入ロスのデータはありませんが、5~10%くらいのロスになると思われます。

17m及び15mバンドと10mバンドはキャパシタンスインプット、インダクタンスアウトプットの変形回路です。 抵抗成分が50Ωよりかなり低く、アンテナのリアクタンスが容量性を持っている場合、この回路がバンド幅も広くなり使いやすくなっています。

12mバンドはハイパスTタイプのコイルをVCで可変しています。 200Ω以上の抵抗成分と+600Ωくらいのリアクタンス成分となっておりますが、調整は以外とブロードです。

これらの検討を行う途中で、このMTUを接続する場所にクラニシのNT-636を持って来て、調整すると、どういう訳か、全バンド整合できます。NT-636はハイパス型Tタイプオンリーですが、整合してしまいます。NT-636は整合出来るのに、私の自作のハイパス型TタイプMTUはなぜ整合できないのか調べた結果、その最大の原因は、MTUの入力側に存在する50PFの浮遊容量の有無でした。 NT-636を接続した場合、出力側の50PFは同じように存在しますが、入力側の50PFは存在しません。 この事は、後日、同じハイパスTタイプのATUを実装する時、役立つ事になりました。

現在の最新配線図 MTU-PIC3.pdfをダウンロード

(エンコーダー側のPICkit3接続コネクタの配線に誤りがありました。)

 

製作してから10年以上経った2023年1月、家のメンテの為、ベランダに設置したこのアンテナシステムは全て撤去しました。 撤去は3時間で完了。 

このアンテナを再開する為の検討を始めました。

マルチバンドアンテナシステム2へ続く。

 

INDEXに戻る

2014年9月17日 (水)

半田鏝(ハンダゴテ)のアース

同じ回路を同じプリント基板上に組み立て、色々と問題点の検討をしているとき、ある特定の人がショッチュウ半導体を壊していました。電源を入れたまま部品交換するな!と言ってあったのですが、それでもFETが壊れた、ICが壊れたとトラブルは発生し続けていました。

Solderiron

原因は、ハンダゴテの先端の半田を溶かす部分を接地した為でした。  感電の危険を防止する為に、日本でも接地端子のある3ピンのコンセントを用意した環境が存在します。そして、ハンダゴテのコテ先もこの接地端子に接続できるようにした、安全性100%とうたわれたハンダゴテも存在します。

しかしながら、3ピンの独立したアース端子が付いたコンセントやテーブルタップを用意しているのは、工場や、プロフェッショナルな作業を行う場所で、一般の家庭や、事務所などでは、2ピンのコンセントがほとんどです。 このような環境では、この手の接地したハンダゴテや機器はかえって感電を招く事になります。 感電には至らないけど、数十ボルトのAC電圧が加わり、トランジスターやICを壊してしまいます。 なぜそうなるのか以下説明します。

世の中にある機器や試作検討中の電子回路を含めて、そのGND側がすべて大地に接地されているのなら、全く問題ありませんが、日本の電気器具は接地を強制しません。 代わりに、商用電源の2本の電線のうち、片方のみが大地に接地されています。 この接地された端子はコンセントの受け口の横幅が少し広くなっていますが、機器についているプラグは極性が有りません。 よって、機器の内部では、ホット側、GND側と言った識別はありません。一般的に、絶縁トランスで絶縁された機器はこのホット、GNDの区別は不要で、2次側と1次側の間は数十メグオームの絶縁抵抗で隔てられており、感電の危険は有りません。

ところが、雷対策や、ノイズ対策で、この1次側と機器のシャーシの間にコンデンサを接続したり、数メグΩの抵抗を入れたりしています。コンデンサは高周波用ですので、50Hzや60Hzの商用電源では無視できるほどのおおきなインピーダンスであり、また抵抗も感電を感じるような電流は流せませんので、無害です。

しかし、高いインピーダンスであるにせよ、そこには大きな電位差が発生します。仮に、ホット側とGND側からシャーシに0.01μFのコンデンサがつながっている場合、シャーシは大地に対して50VのAC電圧を持っている事になります。

実際にどのくらいの電位差があるかは、2台の品種の異なる機器のケース間の電位差をテスターで測ればすぐに判ります。 ごく普通の機器では10Vから20Vくらいの交流電圧が存在します。ところが、工業用の計測器や電源装置は、ほとんどの機器が3線式の電源コードを使い、シャーシは必ず大地に接地するように設計されておりますが、一般家庭や簡易の作業台の場合、アース端子はどこにも接続せずに使っているのが現状です。これらの機器は前述の1次側とシャーシ間に結構小さいインピーダンスをもつコンデンサが接続されている事が多く、例えばDC電源とオシロスコープのGNDどうしを手で触ったら感電したという事もよく発生します。

DC電源のGNDを接地していない場合、GNDの電位は宙に浮いている状態になります。しかし、大抵の電源はそのノイズ対策の為、1次側とシャーシの間にのノイズフィルターという名でコンデンサが接続されています。そこへ、接地されたこて先をもつハンダゴテを当てると、前述の電圧分の電位差が回路素子に加わり、例え通電してなくても、回路素子を壊してしまうという事態になる訳です。 最近のスイッチング電源などは要注意です。

電子回路を検討する場合、ハンダゴテのこて先は完全に絶縁状態にして、回路素子にこて先を当てても電位差が生じないようにします。 ハンダゴテも電源も接地したらいいではないかと言われるかも知れませんが、それは貴方が管理している機器だけの事で、「ちょっとハンダゴテ貸して」と借りた途端、大事な試作回路を壊してしまうのです。

電源プラグが3ピンで機器をGNDへ接続する事が義務付けられている国では、測定器、DC電源を含め、ハンダゴテのGND線(緑と黄色のらせん模様)をニッパで切っていました。 感電のリスクより、検討する回路が壊れるのが怖かったのです。 また、このGNDラインがつながったままの場合、測定系にループが出来て、正確にデータが取れないという問題の対策としてもGNDラインのカットは必要でした。 この国の中にある工場で、問題のあるプリント基板を検討しようとして、ハンダゴテを借り、64ピンのマイコンの足を再ハンダしようとした途端スパークが起こりマイコンが壊れたのは言うまでもありません。結局、ほとんど設備のない場所で64QFPのマイコン交換は丸1日かかってしまいました。

ちゃんと設計された工業用DC電源はGND端子をケースにつなぐか宙に浮かすか選択できるようになっています。実は、宙に浮かして安心していても前述のフィルター名目のコンデンサはつながっています。 また、PCはほとんどスイチング電源ですから、PCのGNDは大抵20Vくらいの電位差がありますので、例え微弱電流しか流れないにしても、耐圧以上の電圧が一瞬加わる事により、半導体を壊してしまうのです。 トランジスターやICを壊して、ロスを発生させる前に、アナログテスターでハンダゴテやDC電源やその他の機器のGND間のAC電圧を測定して置くことですね。そして、AC電圧が小さくなるように各機器のプラグの極性を変える事です。  最近のデジタルテスターは入力インピーダンスが高くて、のきなみ高電圧を表示します。 20KΩ/Vようなアナログテスターの方がこの判定はより正確です。

ハンダごてのこて先への電圧リークは論外です。こて先と接地間で電位差が生じるようなハンダごては、こて先を接地する前に、即廃棄する事をお勧めします。

最近の事例としては、GNDラインが接地されていないPCを、USBケーブルでVNAにつなぎ、VNAのテスト端子をアンテナにつないだら、高価なVNAが壊れたという悲劇が有りました。

INDEXに戻る

2014年9月 1日 (月)

バリコン式ATUの自作 8 (本体完成)

カテゴリ:オートアンテナチューナー(ATU)の製作

マイコンの開発がほぼ終わり、評価ボードを実用サイズに作り直すところまで来ました。この実用サイズは、現用中のプリセットMTUを含めて収納できる防水ケースに収める事が条件ですから、MTUの作り替えを前提としたサイズにしました。

最終的なサイズは  156x102x118mm となりました。

構造は、二つのL字型シャーシに内部パーツを分割してマウントし、これを四角のBOX状に組み立てるもので、オリジナルのTS-930S用ATUと似たようなサイズになりました。

Atu_comp5

Atu_comp4

上の画像は、バリコン部とCM結合器及びマイコン基板が実装された状態です。 軸の穴径拡大時に失敗し、傾いてしまったギアも、作り直し、傾きが無いものと交換しました。

Atu_comp3_2

Atu_comp6

上はコイルとこのコイルのタップを切り替えるリレーを10個並べたもので、リレーはアルミのLアングルで動かないように固定して有ります。

このふたつのアングルを合体すると以下のようになりました。

Atu_comp2

Atu_comp1

この状態で、動作テストを行い、問題なく動作しましたので、側面のカバーをかぶせて出来上がりです。

JW-CADで組み立て図を書き、その組み立て図から部品図面をおこしますが、組み立て図をコピーして作った部品図面は、間違いはないのですが、寸法のみ拾い、別に図面を書いたものは、穴位置が反対だったり、位置ずれがあったりで、かなりステ穴が増えました。また、板金の曲げ加工はバイスと木の当て板だけで行い、曲げ部分のRを小さくする為、ハンマーでたたくものですから、平面であるべきところが凸凹です。厚さ1mmのアルミ板ですが、この曲げ加工により強度がアップしましたので、みてくれは悪いですが、安心して使えそうです。

Atu_comp0_2

Atu_comp7

マイコン基板はむき出し状態ですが、不安定になるようなら、薄いアルミ板で上からカバーするつもりです。 一番最後の段階で実装する事になるでしょう。

一応、ATUはできました。 これを、現用中のプリセットMTUと平行してテスト運用していますが、どうしても従来のMTUを使う頻度が高くなります。 原因を考察すると、ATUはバンド切り替えの度に、例えTUNE動作は必要なくても、送信というアクションが必要です。バンドの状態はどうかな?とちょっとの間、他のバンドを聞きたくても、チューナーが整合していませんので、7MHzの国内交信は聞こえても、ハイバンドのDX信号は聞こえません。 

一方、プリセットMTUは受信機のバンド切り替えと同時にハンドでカチカチと切り替えるだけですぐに受信できます。このような問題を解決する手段として、最近のモデルは、現在の受信周波数やモードなどを外部へ出力しており、このデータを利用して、ATUも予め決めた調整状態に設定する事ができます。  しかし、残念ながら、私のリグは30年くらい前のリグですから、そんな便利な機能はありません。

そこで、現用のプリセットMTUのバンド切り替え情報のみでATUをプリセット出来るようにしました。もちろん、このプリセット時の送信は一切ありません。プリセットMTUは3.5MHzから28.7MHz(28.7MHz以上は使用していません)までを14バンドに分割しています。ATUの28バンド分割の半分しかなく、バンド全域はダメですが、私が良く使う範囲はSWR1.5以下に収まります。このプログラムを実装しましたので、従来のMTUと同感覚でATUを使用できます。

遠隔操作システムが完成したら、従来のプリセットMTUは不要になるかも知れません。ただし、それを確認できるのは、かなり先の事になりそうです。

バリコン式ATUの実装 に続く。

INDEXに戻る

2014年8月27日 (水)

バリコン式ATUの自作 7 (遠隔操作)

 <カテゴリ:オートアンテナチューナー(ATU)の製作

ATUとしての基本機能が完成しましたので、これをベランダに設置し、そこから約20mのケーブルをシャックの中まで引きこみ、シャックの中からこのATUを操作する事になります。 この遠隔操作システムの検討と試作を行いました。

現在の遠隔操作システムは、ベランダに置かれた、17台のプリセットMTUをバンドや使用するアンテナに応じ8本のケーブルで操作していました。すべて、パラレル制御です。

Mtucont0

今回ATUを設置するに当たり、MTUの操作を残したまま、ATUの操作を追加しますので、従来通りパラレル制御を行うなら、さらに6本のケーブルが必要になります。 そこで、RS232Cより長い距離でも通信が行えるようにラインドライバーを設計した上で、制御は1本のシリアルラインで行い、電源を含めて3本のラインで構築する事にします。

また、ATUからの戻り信号として、ATUの状態を示す2個のLED出力をそのままパラレルでコントローラーへ返すことにします。 それでも3本のラインが余りますので、将来、ATU側からSWRなどのデータをシャックに戻す為に、ハード設計だけして予約して置くことにしました。

新規に作成するコントローラー(エンコーダー)も、プリセットMTU制御回路(デコーダー)もATUと同一シリーズでピン数のみ28ピンとなるPIC16F1933で作る事にしました。

Mtuenc0_2

Mtudec0_2

左上がエンコーダー、右がデコーダーです。現在のプリセットMTUのコントロール機能はすべて含まれますが、MTUの数は最大で20台までとしました。また、今まで、ベランダ側で操作できなかった、ローバンド、ハイバンドの切り替えと外部アンテナへの切り替えを可能にしました。また、テストモードをOFFし忘れて、シャックに戻ると、手元のコントローラーから操作不能になり、またベランダまで出なければならないという不便を解消する為、例えテストモード状態でも、シャックから操作があると、自動的にテストモードをOFFにする機能も追加しました。

ATUの制御は4つのスイッチだけで行い、その状態は2個のLEDで確認できますので、このLED出力のみパラレルでシャックにもどします。もちろんATU on/offもベランダ側でも操作できるようにしました。

これらの制御は16pitのシリアル信号で行いますが、現在使用されているのは10bitのみで残りの6bitは将来の予約です。

UARTを使用したシリアル通信は初めてのトライで、理解できるまで何日もトラブリました。最大の問題は多重割込みによりメインループが止まってしまうという問題でした。とりあえず、割込み処理ルーチンの処理時間を極力短くして多重割込みが発生するチャンスを減らすくらいの対策しかできませんでした。 なお、このシステムを操作するのは一人の人間で、通常はATU側とエンコーダー側を同時に操作できません。現在のデバッグはエンコーダーもATUも同じ机の上に有り、多重割込みが発生する操作ができるものです。 実際には問題の発生は無いと考えられます。

また、スタックオーバーフローも発生し、これを回避する為に、関数のネストを減らしたり、ローカル変数をグローバル変数に変えるなど何日もロスする事になってしまいました。

UARTの通信速度は1200ボーに設定しましたが、距離が20mもありますので、通常のラインドライバーではなく、1AクラスのP-MOS FETによる電源ラインの直接スイッチング方式としました。とりあえず、10mAくらいの信号電流でトライしますが、誤動作があるようなら、最大で数100mAも流せる回路にしてあります。 20mのケーブルを使った実験では、問題なく動きました。

Mtu_uart_in

Atupcbback

左上の波形は、20mのケーブルに接続されたデコーダーマイコンのRX入力端子の波形です。波形の角が少し丸みを帯びていますが、大きく崩れることなく、伝送出来ています。

右上の基板はATU回路の裏側です。チップ部品より配線のリード線の方が目立ちます。最初から、全ての回路が決まっていたら、配線経路が最少になるように部品の配置を決めますが、今回のように、ソフトを開発しながら、必要に応じてハードを追加したり、変更したりすると、このようにジャングルになってしまいます。 実用するATUに作り替えるとき、この基板は、このまま使いますので、シールドケースがいるかも知れません。 後日、100W出力による動作テストを行いましたが、MTUもATUも誤動作なく動きました。

Atulinedriver

実使用状態にするには、まず、このATUのサイズ縮小と防水設計をする必要があります。また、現在使用中のMTUコントローラーも改造が必要となり、かなり長い期間QRTせねばなりません。 次のステップは秋のDXシーズンが終わってからになりそうです。 それまでは、机の上に置き、時々デバッグをする事にします。

MTUのエンコーダー、デコーダー及び遠隔操作機能を追加したATUの配線図は以下からダウンロードできます。

シリアルコントロールのプリセットコントローラー配線図MTU-PIC3.pdfをダウンロード

遠隔操作機能付ATUの配線図をダウンロード

バリコン式ATUの自作 8 (本体完成) に続く

INDEXに戻る

2014年8月16日 (土)

TS-930 メインダイヤル誤動作(アップしない)

<カテゴリ:TS-930>

突然、メインダイヤルで周波数がアップしなくなりました。どっちに回してもダウンばかり。時々アップしますが、不規則に変化し、全体的にはダウン方向です。 KEMのトランシーバーでも似たような現象がありましたので、メインダイヤルのエンコーダー出力をチェックしました。

Ts930mewave1

デジタル基板に4ピンのコネクター(④のマーキング)で接続されていますので、デジタルオシロをつなぐと、ME1には信号がありますが、ME2はHのままで、パルスが有りません。セットを逆さまにしてこのメインエンコーダーと呼ばれる基板の端子をモニターすると、今度はME2にもパルスが出ていますが、そのパルス幅が非常に狭い状態でした。高速でダイヤルを回転すると、パルスが細くなりさらに高速にするとパルスが出なくなります。

左の画像の上の波形がME1、下の波形がME2です。最初チェックした時は、ME2のパルス波形は有りませんでした。

Ts930nainencorder

このメインエンコーダーの回路図が見つかりませんが、左に基板図を示します。半固定抵抗でフォトトランジスターのしきい値を調整しているようですので、とりあえず、半固定抵抗VR2を回してみました。すると、ME1と同等のパルス幅になり、半固定抵抗を元の角度まで戻してもパルス幅は少しは狭くなりますが、ME1と同等です。 どうやら、この半固定抵抗が接触不良を起こしていたみたいです。ドライバーでグリグリと何度か回転させ、ME1とME2のパルス幅が同じようになるポイントに固定しました。

Ts930mewave2

以上の作業でダイヤル動作は正常状態に戻りました。 左の画像は修正後のME1とME2のパルス波形です。

最初コネクター部分でパルス波形が見えない状態の時は、完全に接触不良を起こしていたようです。その後、セットを分解するとき振動を与えましたので、わずかに接触して不完全ながらパルスは出力するようになったと思われます。

私の場合は、デジタルオシロがありましたので、簡単に原因が判りましたが、同じような現象に遭遇され、オシロが無い場合、この基板についている半固定の元の位置が判るようにマジックなどで印をつけた上でグリグリ回してみて下さい。正常にもどりましたら、半固定の位置を元の位置にもどしておきます。

Ts930mepcb

左の画像はセットを裏返し、フロントパネルが手前にあるように置いた時のメインエンコーダー基板ですが左側の半固定がME1を、右側の半固定がME2のパルス幅を調整します。

INDEXに戻る

2014年8月10日 (日)

バリコン式ATUの自作 6 (角度センサー対応アルゴリズム)

カテゴリ:オートアンテナチューナー(ATU)の製作

TS-930S用ATUのギアBOXにバリコンの回転に連動した可変抵抗器を追加し、バリコンの角度を電圧の変化に変換する角度センサーを使ったATUのSWR収束のアルゴリズムを試行錯誤しています。

1.   フラッシュマイコンにプログラムを書き込むとき、VC1,VC2の最大容量時、最少容量時の可変抵抗器出力データをプログラム上で初期設定し、50Ωのダミー抵抗に整合する時のコイルのTAP番号と、VC1,VC2の角度データを予めEEPROMに書き込んで置きます。  バリコンと可変抵抗器がギアで直結されていますので、いかなる事が有っても、バリコンは180度以上は回転しないという条件を設けます。

2.  TUNE状態になったら、キャリアレベルを検出し、規定値以内のレベルなら周波数を測定し、得られた周波数からコイルのTAP番号と、VC1,VC2の初期設定用角度データをEEPROMから読み込みます。

3.  SWRが20以上ある場合、VC1,VC2を初期設定用角度まで回転させ止めます。TAP番号に変更が有ったらタップの切り替えを行います。 バンド内で周波数を変えたときSWRが20を超えるような場合、収束に時間がかかりますので、当初、バンド幅が100KHzを超えるバンドは100KHz~350KHzくらいごとにバンドを分割し、全体を18のバンドに分割していました。 

何度もチューニングを繰り返す内に、前回SWRが規定値以下に収束したバンドはVC1とVC2を前回の角度にプリセットするだけで、かなりの確率でSWRが実用レベルに収まる事がわかりました。これを利用すべく、周波数をチェックしただけで、バリコンの角度とTAP位置のみを設定し、チューニングはしないモードを作る事にしました。このモード対応の為、最終的には、3.5MHzから29.7MHzまでを28バンドに分割しています。

4.  SWRのチェックを行いSWRが20以上ある場合は、VC1,VC2とも最少容量まで回転させ、そこから、VC1を小刻みに容量最大方向へ送りながら、VC2を180度づつ交互に回転させ、SWR20以下を探ります。 最小容量からスタートする事で、VC1,VC2とも最大容量でSWR最少に収束する現象を回避しました。この小刻みに送る角度は周波数により変化させ、ハイバンドは1回の送り角度を2度くらいにしますが、ローバンドは5度くらいの角度で送り、SWR20以下の検出時間を短くします。1回に送る角度が多ければ早く検出出来ますが、検出漏れが発生しやすくなりますので、これらの角度は実験で決めます。

5.  SWR20以下が見つかりましたら、

・ VC2を短時間CW方向に回転させ、SWRが変わらないか下がる場合、SWRが上がるまで繰り返します。(SWR最少ポイントを少し過ぎたところで停止) 停止コマンドを送ってから、実際に停止するまでの時間は非常に重要です。SWRのチェックは、実際に停止してから行わないと判定を誤ります。停止までの待ち時間を長くとると、SWRのチェックは確実ですが、収束時間が長くなります。何回も動作テストを行い最適値を決めます。

・ SWRが上がる場合、VC2を反転しCCW方向に回転させ、SWRの変化を見ます。SWRが変わらないか下がる場合、SWRが上がるまで繰り返します。SWRが上がる場合、VC2を反転させますが、この動作中に回転の反転を2回やったら、この動作は終了。

 

・ VC1を同じように繰り返します。  VC2もVC1も一度SWRが下がった場合、そのときの回転方向を記憶しておき、メインループを1周して、このルーチンに戻ったとき、前回の回転方向でスタートする事により、スムースにSWR最小ポイントを探す事ができます。 この動きはMTUの調整方法と同じです。

・ VC1、VC2いずれも1回に送る時間は周波数で変化させます。24MHz以上の場合、30mSec、5MHz以下の場合、60mSec、その他の周波数では40mSecとしておき、使用しながら最適値に決めます。また、SWRが2以下まで収束しましたら、この送り時間を半分にして微調整モードとします。

6.  5項をSWRが規定値以下になるまで繰り返します。 規定値は時間経過により、次第に緩くしていきます。最初の5秒間はSWR1.10以下への収束としますが、5秒以上経過したら、SWR1.25以下、10秒経過したら、SWR1.50以下、20秒経過したらSWR3.0でもチューニング完了とします。SWR3付近で完了した場合でも再度チューニングをかけると、SWR1.10まで収束しますので、周波数を可変して、SWRが高くなってきたら、再チューニングしています。

7.  VCが最大容量や最少容量を超えたらとりあえずエラー警告して停止させます。 その上で、バリコンが最大容量で停止したら、TAPをひとつ下げます。最少容量で停止したらTAPをひとつ上げます。 エラー状態を示す赤色のLEDが点滅して停止していますので、再度チューニングスタートボタンを押すと、変更されたTAP状態で再調整にトライします。 私のアンテナはこの処置で全バンド整合できます。 これでもエラーが続くようなアンテナの場合、諦めることにしました。(アンテナ自身を調整する事になります)  なお、2回目からは新しいタップ位置でプリセットされていますので、エラーになる事は有りません。

8.  SWRが規定値に収束したら、TAP番号とふたつのバリコン角度データをEEPROMに記憶します。この機能により、一度チューニングが成功したバンドは、ほぼ5秒程度でチューニング完了です。 バリコンがプリセット位置に移動しただけでSWR1.10以下という状態もかなりの頻度で発生します。この時は2秒以内で収束します。

9.  チューニングする時のモードを二通り選択できるようにしました。  キャリアを出した後、スタートボタンを押すと、SWR最少になるよう本来の動作を行います。 キャリアを出さない状態でスタートボタンを押すと、キャリアが無いという表示であるグリーンLEDがスローで点滅します。この状態で、キャリアーを出すと、TAPの切り替えと、VCのプリセットのみ行い、SWRはチェックせずに終了させます。このプリセットのみの場合の所要時間は2秒以下です。 特にSWRのチェックをしませんので、SSBモードでもノイズだけで周波数を読み、プリセットしてしまいます。 

バンドを28に分割しましたので、天気が同じなら全バンドSWR1.5以下になります。 雨が降って状態が変わってしまったら、このモード終了後に再度チューニングをかけると、SWR最少状態に短時間で収束します。 ATUはバンドを変えたら出力を絞ったキャリアーを出してチューニングするのが一般的ですから、その面倒さゆえバンド切り替えがおっくうになりがちですが、このモードでかなり楽になりそうです。

アンテナをつないで、最初にチューニング動作を行わせた時とか、アンテナを変更したためにバリコンをプリセット角度に移動させてもSWRが20以下にならない時だけ、4項の動作を行いますが、それ以外の場合、3項から4項をスキップして、5項に入ります。また、3項の動作は概ね2秒以下ですが、バンド切り替えが無かったら3項の動作時間は1秒以内ですから、チューニング開始してから5秒くらいでSWR1.10以下に収束します。 

 

Atusens2_2

Atu2

3.8MHz帯の整合がクリチカルな状態でしたので、追加コイルを復活させました。ただし今回は5μH分だけです。

 

バリコンの角度は可変抵抗器のセンター端子から得られるDC電圧をADコンバーターで読んでいますが、このデジタルデータは10bitです。EEPROMの記憶エリアは8bit単位ですので、ADのデータも10bitで取得した後、右へ2bitシフトし、8bitデータとして処理しています。  ギアのかみ合わせ調整時、最大容量で10くらいにセットすると、最少容量で205くらいになります。差は195ですから、バリコンの回転角180度を1度弱の分解能で表示している事になります。

  このバリコンの角度データもLCDに表示できるようにしました。左上の写真にあるLCD表示は1行目左3文字がVC1の角度データ、4番目がTAP番号、5番目からSWR値を表示。2行目の左3文字がVC2の角度データ、4番目以降は周波数です。この例では、14.020MHzでSWR1.04に収束した時のTAP番号は4、VC1の角度は163, VC2の角度は169を示しています。このLCD表示は、プログラムのどの部分を検討しているかによって、随時表示を変えていますので、一定ではありません。

角度センサー付の配線図は以下からダウンロードできます。

ATU-VC4.pdfをダウンロード

整合可能範囲が広いという事は、疑似SWRディップポイントへの収束やバリコン最大容量状態への収束にはまりやすいという事と裏腹のようです。 この対策とバグ取りを行っていましたら、XC8というコンパイラーの癖が見えてきました。

関数の戻り値がマイナスになると無視されます。比較演算の中で、マイナス数値を扱うとWarningがでます。単にWarningが出るだけと思っていましたが、比較の対象が負の数の場合、予期しない動作をします。 比較演算式の中に負の数値が表現されないようにすると、Warningも出ずに、結果も常に正しく判定します。データの型をunsigned charで無く、単に「char」にしても同じでした。 この現象の為、バリコンの回転角を180度以内に抑えるプロテクターが働かず、ギアを外して、設定し直した回数は、数えきれません。 

何回か書き込みしていたマイコンがIDを返さなくなりました。従い、書き込みもできません。どうやら壊れたみたいです。壊れた原因が判りませんが、予備のマイコンに交換して継続しています。 ATUの電源を接続したまま書き込むと、書き込みエラーになります。もちろん、書き込み治具側からの電源供給のチェックを外していますが。 これが原因でしょうか?

一度ごみ箱に捨てたマイコンを拾ってきて、PICkit3から供給する電圧を5Vではなく4.6VにするとIDが返ってきました。 そして、書き込みができ、動作も問題なしでした。

アンテナに接続して、最初にチューニングした場合、ハイバンドで10秒くらい、ローバンドで40秒くらいでSWR最少状態に収束します。2回目からは全バンド5秒くらいで収束します。また、バリコンの角度だけプリセットしてSWR収束処理を行わない時は2秒以下で完了します。 実際の運用は、雨が降らない限り、このSWR収束なしで問題なく交信できます。

一応、完成しましたので、遠隔操作機能を追加しますが、現在使用中のMTUを使用したマルチバンドアンテナシステムの制御回路を含めて変更が必要になりますので、しばらくお預けとする事にしました。 

バリコン式ATUの自作 7 (遠隔操作) へ続く。

INDEXに戻る

2014年8月 9日 (土)

バリコン式ATUの自作 5 (角度センサー)

カテゴリ:オートアンテナチューナー(ATU)の製作

ATUのソフト開発中ですが、バリコンの角度センサーはマストのようです。 今回は、TS-930S内蔵用ATUに追加したバリコンの角度センサーを紹介します。

部品集めです。

Atugiar

Atugiar4

直径16mmの平ギアで3mmのシャフトに止められる物、16φで軸径が3.2mmの可変抵抗器、25mm長のM3小ネジ、内径4mm長さ15mmのスペーサー、それに可変抵抗器を保持するアルミフレーム。

平ギアと可変抵抗器は千石電商から通販で購入。小ネジとスペーサーは近くのホームセンターで購入。アルミのフレームはJW-CADでギアBOXの組み立て図を作図し、図面を作成した上で、糸ノコと電動ドリルで自作しました。

フレームの図面です。  ギアのかみ合わせの調整を何度もした結果、13.5mmの寸法は13.2mmくらいにした方がいいみたいでした。

Atugiar9

Atugiar5左は、加工済みアルミフレームと、可変抵抗器の軸に装着した平ギアです。 

この平ギアは軸径3mm用であり、可変抵抗器の軸径3.2mmと合いません。よって、3.2mmのドリルで穴を拡大するのですが、購入した4個のギアの内、1個のみ軸径2mm用が混入していました。 ちょうどこの日、台風11号が接近中で大雨となっており、屋外作業となるボール盤が使えません。やむなくハンドの電動ドリルで穴拡大の作業をおこないました。

軸径3mmのギアの穴を3.2mmに拡大するのは問題ないのですが、軸径2mmを3.2mmに拡大すると、穴の軸がほんの少し傾いてしまいました。 ギアが薄いので、かみ合わせがきわどくなってしまいましたが、とりあえず使えます。

この軸径の間違ったギアは後日、注文通りの軸径3mmの物が無償で送られてきました。(TKS)

Atugiar1

Atugiar2

バリコン駆動シャフトにも平ギアを装着しますが、シャフトがサビていて、ギアが挿入できません。ヤスリでシャフトを磨いたり、ギア側のアルミボスの穴をヤスリで削ったりして現物合わせで挿入しました。 ギアBOXはそれぞれ4個のビスでアングルに固定されますが、上側のビスを25mm長のビスに変更し、飛び出したビスに15mm長のスペーサーを差し込みます。 このスペーサーの内径は4mmで、ギアBOX固定用アングルの絞りタップを包み込んでしまいます。

アルミフレームに可変抵抗器を取り付け、ギアを仮止めした状態で、アルミフレームを25mm長のビス4本で固定します。そのままでは、可変抵抗器の本体がアングルに当たり挿入できませんので、一度、25mm長のビスを緩め、アルミフレームを差し込んだら、また元通りに締め直します。

Atugiar7

Atugiar8

バリコンは最大容量位置から半時計方向に10度くらい回した位置にしておき、可変抵抗器は半時計方向に回しきって置き、ふたつの平ギアがかみ合うように固定します。

ここまでできたら、モーターにDC電源をつなぎ、問題なく動作する事を確認します。 ギアのボスの穴径を拡大するとき、穴の軸が傾きましたので、回転すると、ふたつのギアのかみ合い部分がずれます。ずれても、かみ合いが外れない位置にギアを固定しました。

ギアがプラスチックですから、可変抵抗器のストッパーに当たると、ギアの歯が欠けてしまう可能性があります。マイコンソフト作成時十分注意が必要です。最後の保護手段として、ギアがロックされたら、モーターコントロール用ICの電源ラインにシリーズに入れた10Ωの抵抗が断線してギアを保護する事を期待したいと思います。

後日、可変抵抗器のストッパーに当たる事故が何回も発生しましたが、10Ωは断線しない代わりに、電圧降下が起こり、モーターのトルクを弱めますので、ギアも無傷で済みました。

Atugiarlist

この角度センサーに使用した部品リストを左に示します。  軸径が3mmの可変抵抗器を使えば、平ギアが傾く問題は無くなると思います。 

アルミフレームを寸法通り作るこつは、JW-CADで一度作図し、これを実寸大(拡大率100%)でインクジェットプリンターで紙に印刷します。 プリンターはキャノンでもエプソンでもOKです。 この印刷した紙をアルミ板に糊で張り付け、穴の中心にポンチで印をつけると、ハンドドリルでも大きく寸法が狂う事はありません。穴のセンターずれを押さえる為に、一度2φくらいの穴をあけ、その後で目標の穴径に拡大します。  寸法がずれている場合、4個の3.6φの穴径を3.8φとか4φに広げて調整します。 アルミ板は柔らかいので、その他の寸法誤差も吸収してくれます。         紙をアルミ板に張り付ける時は、決して両面テープは使いません。 穴あけ加工後、両面テープをはぎ取るのに苦労しましたから。 糊なら加工後に水洗いすれば、きれいに取れます。

とりあえず、角度センサーができましたので、これに対応するSWR収束のアルゴリズムを検討する事にします。

バリコン式ATUの自作 6 (角度センサー対応アルゴリズム) に続く

INDEXに戻る

2014年8月 5日 (火)

バリコン式ATUの自作 4

 <カテゴリ:オートアンテナチューナー(ATU)の製作

Atutb

VC1とVC2が容量最大状態に収束し、真のSWR最少ポイントを見つけない問題を解決する為、仮に、バリコンの角度センサーが有った場合どうなるかシュミレーションしていきますと、コイルのTAPを適宜選択する事により収束しやすくなる事が判ってきました。 さらに、前回までの実験はダミー抵抗による収束検討でしたが、実際のアンテナの場合、周波数を変えると、リアクタンスも抵抗も変化するという違いがあり、VC1,VC2ともに最大容量へ収束する確率はかなり低くなる事も判りました。

バリコンの角度センサーをどうするかは、先送りして、角度センサーなしでどこまで改善できるかトライしました。

サーボ機能はその応答特性が重要で、状態の変化に対して、応答が速すぎても、遅すぎても収束に必要な時間は長くかかります。 モーターの駆動時間やブレーキをかけてから完全停止するまでの待ち時間などを変えてやると、SWR最少ポイントへの収束時間は大きく変わります。早い時は1秒くらいで収束し、遅い時は30秒近くかかる場合もあります。 また、バリコンの最大容量もしくは最少容量の付近で行ったり来たりして、永久に収束しない事も出てきます。そこで、収束させる条件を前回より以下のごとく変更しました。

  • サーボ動作に入る為のSWR条件をSWR5からSWR10に変更しました。 例えば、21.05でSWR1.05に収束した状態で周波数を21.40に変えると、私のアンテナでは、SWRが5を超えてしまいます。従来のままなら、SWR5を超えた時点で、メクラ状態でVC1とVC2を回し、SWR5以下を探す事になってしまいます。SWR10以下に変更すると、この値以下のSWRの時は、即サーボ動作を開始しますので、収束が速くなります。

  • SWRの収束目標を3段階にします。 従来はSWR1.15を目標にしていましたが、最初の目標をSWR1.05以下とし、10秒以上経過しても、収束しない場合、SWR1.20まで緩めることにします。 さらに20秒経過しても収束しない場合、SWR1.40で緩めます。 収束しないよりはましです。 1.40くらいで収束した状態で再度チューニングをかけると、1.05以下に収まります。

  • それでも収束しない場合、コイルのタップ位置を手動で切り替えてみる事にしました。 コイルのタップ位置は7メガのダイポールに18メガを整合させる場合と、17メガくらいに共振周波数のあるスカイドアアンテナを18メガに整合させる場合、違ってくる事が判りましたので、バンドとタップの関係は固定しない事にします。 バンドとタップの関係はEEPROMに記憶させ、次回からは成功したタップ位置を呼び出す方式です。

  • チューニング動作を開始する送信機の出力範囲を広げました。 前回までは、5Wから40Wくらいの範囲にしてありましたが、SWRの計算にエラーが発生しない事を確かめて、1Wから40Wまでの範囲でチューニングできるようにしました。 出力が上ると、コイルの切り替え時、リレーへの負担が大きくなるので、実際にチューニングする時は、10W以下の必要最小限に抑える事にしています。 

  • モーターの回転数は12V駆動の高速と4.5V駆動の低速にしていましたが、4.5Vでは加速が遅く、短時間駆動では、ギアのバックラッシュすら吸収できない事がわかりました。この低速状態は機械的に非常に不安定で、温度や湿度でサーボの応答特性が変わってしまいそうです。 色々実験しましたが、低速は6V駆動として、最低限の起動トルクを確保した上で、動作時間を細かく調整する事にしました。 6Vの場合、最初のメクラ状態でSWRのディップポイントを探す時粗くなりますので、ディップポイントを見逃して、結果的に探す時間が長くなりますが、やむなしです。

 

Atutap3_2

以上の改善を行うと、実際のアンテナの場合、角度センサー無しでも、全バンドSWR1.40以下に収束できるようになりました。 左の画像は、現在のタップ位置4をLCDに表示した状態です。またこのタップ番号を手動でアップしたりダウン出来るスィッチを追加しました。 チューニングを開始し、いつまで経っても、終わらない場合、手元でタップ位置を上げたり下げたりして確認する事ができます。 

この為もあり、一定の時間チューニングしてダメなら、そこでチューニング動作を中止するという機能は廃止しました。チューニングを止めたい時はSTOPボタンをおします。 しかし、まだ、収束時間は長く、最適状態にするには、かなりの試行錯誤が必要なようです。 多分、最終的には、バリコンの角度センサーが必要になるとおもわれますが、それまでは、現状でトライしてみます。

今回、PICのTimer4を使い、0.2mSecごとに割込みが発生するようにソフト変更し、この割込みを使い、時限設定機能を使えるよにしましたが、C コンパイラーの中にある関数

__delay_ms(20) ; // (括弧内の数値を変えて任意の遅延が可能。ただし数値は実数のみ)

の実際の遅延時間が設定した時間より8%ほど長くなる事が判りました。Timer4以外に未使用のタイマーとして、Timer2とTimer6がありますが、どれを使っても8%長くなります。この既成の関数もこれらのタイマーを使っている為でしょう。 このATUの場合、周波数カウンター動作時は全割込み禁止で影響なし。その他の遅延設定でも8%くらいの誤差は無視できますので問題なしです。

設定したアルゴリズム通りに動作しないバグを取り除き、モーターの駆動時間や、ブレーキ後の待ち時間の調整をした結果、14MHz以上のバンドでは、サーボ動作開始後からSWR収束までの時間は最短で1秒、長くても5秒くらいになりました。 しかし、10MHz以下のバンドは20秒を超える事がしばしばです。バンドによってサーボ定数を変更しなければならないかも知れません。

検討の為、このATUは、トランシーバーと同じ場所に置いてあり、アンテナからここまで約20mの長さの同調フィーダーでつないでいます。18MHzでラオスが聞こえますので、このATUでチューニングしてコールしてみました。一応交信は成立しましたが、アンテナ直下のプリセットMTUに比べて、受信信号強度はS半分ほど悪く、ノイズはMTUがS2でATUがS5でした。 ATUはアンテナ直下に限りますね。

現在まで発生したハードの変更を網羅した配線図は以下からダウンロード出来ます。

ATU-VC2.pdfをダウンロード

バリコン式ATUの自作 5 (角度センサー) に続く。

INDEXに戻る

2014年8月 2日 (土)

バリコン式ATUの自作 3

カテゴリ:オートアンテナチューナー(ATU)の製作

コイルを1個にして、再度バンド毎のTAP位置を確認する事にしました。前回に比べて大幅にずれました。コイル2個のときは、シャーシとの静電容量の影響もありましたので、今回のTAP位置が素直に見えます。 

Atutap2_2

Atuband0_2

このバンド毎のTAPを切り替える時は、切り替え時に高電圧が発生してスパークするのを防ぐ為、ショーティング切り替えを行います。右上にTAP3からTAP5を切り替えるタイミング例を示します。リレーが動作完了するまでの時間を仕様書で調べたら15mSecとなっていました。これは電極が磁石で引き寄せられる時間と一度接触した接点が反動でバウンズし、それが収まるまでの時間です。 今回は余裕を見て20mSecとしました。

このATUは2個のADコンバーターを使いVFWDとVREFの電圧を読んでいますが、マイコンの中のADコンバーターは、1個のサンプルホールド回路しかなく、指定されたi/oピンに接続し、AD変換が完了したら、レジスターにデータをストアーする構造ですから、VFWDとVREFは同時にAD変換できません。かつ、VFWDの変換を行った後、i/oピンの切り替えを行い、VREFの変換を開始するまでウェイト時間が必要です。

PICの仕様書ではこの待ち時間は数マイクロ秒となっており、今回は余裕を見て5マイクロ秒に設定していました。SWR5以下が見つかり、そこからSWR1.0に向けて収束プログラムが動作するのですが、ときどき、AD変換の結果が異常値を示します。原因が判らず、2日間もロスしましたが、どうも連続1000回くらいのAD変換では、待ち期間5マイクロ秒では不足のようです。これを10マイクロ秒まで増やすと、正常に動作するようになりました。 

このバリコン式ATUの整合アルゴリズムは以下のようにしました。

  1. キャリアの周波数を測定し、そのハムバンドに予め決めたコイルのTAP位置を設定。
  2. VC1を低速、VC2を高速でそれぞれCW(時計方向)方向に回転させ、SWRが5以下を検出したらVC1,VC2とも停止させる。
  3. VC2を短時間CW方向に回転させ、SWRが下がる場合、SWRが上がるまで繰り返す。(SWR最少ポイントを少し過ぎたところで停止)
  4. SWRが上がる場合、VC2を反転しCCW方向に回転させ、SWRの変化を見る。SWRが下がる場合、SWRが上がるまで繰り返す。SWRが上がる場合、VC2を反転させるが、3,4項の動作中に回転の反転を2回やったら、この動作は終了。
  5. VC1を3,4項と同じように繰り返す。
  6. 2-5項をSWRが規定値以下になるまで繰り返す。規定値はとりあえず1.15としました。

一応このアルゴリズムでSWR1.15以下に収束するようになりました。 短時間VCを回転させるときの時間や、回転スピードなど詰めなければならない事項もありますが、「出来た」と喜んでいると、問題点が発覚しました。

Atuswr1

左の画像は、3.532MHzでSWR1.08に収束した時のLCD表示です。 3.5MHzから10MHzまではOKなのですが、14MHz以上はVC1とVC2が最大容量になるように収束し、本当の整合ポイントにはなかなか収束しません。原因を調べる為、NT-636にダミー抵抗をつなぎ、マイコンの動作を手動でシュミレーションしてみました。 

すると、NT-636でも同様に真の整合ポイント以外にVC1,VC2最大容量の位置でSWR最少となります。ただし、SWR1.5くらいまでは収束しますが、それ以上小さくはなりませんから、いつまで経ってもモーターは停止しない事になります。 しかも、真の整合ポイントより、はるかにブロードで、この間違った収束ポイントに向かう範囲もかなり広くなっています。

この問題をTS-930Sはどのように対策したのか調べてみました。3.5-14MHzはT型、18MHz以上はパイ型で動作させ、かつ整合可能な範囲をかなり狭くしていました。 目標はNT-636並みの整合範囲を有するATUですから、TS-930Sのノウハウは使えません。

色々と手動で調べていくと、ハイバンドになると、大きな容量のバリコンはかえって邪魔になるようです。現在の最大容量は250PFですが、NT-636は150PFです。 また、周波数を高くするに従い、この最大容量を小さくしていくと、VC1,VC2最大位置でSWRのディップが現れにくくなる事が判りました。 これを実現するには、周波数に応じて、バリコンの角度を管理するか、バリコンにシリーズキャパシターを追加するか等の対策が必要になります。 KENWOODはこのモデルの後のチューナーはバリコンの角度センサー(可変抵抗器)付で商品化しています。

他の対策方法を含めて検討する必要がありますが、問題の大きさから、やる気が半減してしまいました。趣味でやっていますので、気が向くまで、とりあえずお蔵入です。 

バリコン式ATUの自作 4 に続く

INDEXに戻る