« 2016年3月 | メイン | 2016年6月 »

2016年5月26日 (木)

AM50W カーボニルコアの効果

<カテゴリ AM送信機(PWM方式)

T200-26のコアはまだですが、T150-26というAmidonかMicrometalか、はたまた中国製のセカンドソースか判りませんが、それらしきコアが入手できましたので、最大重畳可能なDC電流を気にしながら、LPFの再計算を行い交換する事にしました。

Amtx_mod_lpf_carbonilcore

再計算された4次LPFの各定数は上のようになりましたので、コイルもコンデンサも、この数値に最も近くなるように設定し、巻き上げたコイルが左下、このLPFでの変調波形が右下になります。

 

Amtx_carbonilcore

Amtx_t15026_90mod

左側のコイルはACコードを裂いて作ったビニール線で、右側のコイルはLANケーブルを裂いて取り出したAWG24の2本より線で巻いてあります。 変調周波数は630Hzですが、はっきりと従来のフェライトコアより歪が少なくなっています。

Mic_ftoku_2

さっそく、音楽を変調し、TS-850のAMモードで受信してみました。 すると、確かに歪は大幅に減少していますが、周波数特性の高域に伸びが有りません。 そこで、MICアンプから変調段までの周波数特性をチェックしてみました。

左のグラフがMIC入力から変調終段FETゲートまでの特性を青色で、250KHzのLPFの出力端までの特性を赤色で示しています。 グラフを見る限り、フェライトコアの時の特性と差異はありません。 しかし、聴感上は大きく異なります。 

原因はコアの鳴きの有無でした。 今回のコイルは変調音がコイルからほとんど聞こえません。 従来のフェライトコアはツィータースピーカーを思わせる高域のみがコイルから発せられており、かつこの高域の音はかなり歪んでいました。

TS-850もこの送信機も同じテーブルの上に置いてありますので、TS-850のスピーカーがウーハーとなり、フェライトコアがツィーターとして2-WAYのスピーカーシステムを作ってしまい、歪んだ音ですが、広帯域の音として聞こえていたものでした。 このカーボニルコアの方が、正常な音質のはずなのですが、いまひとつ物足りなさを感じます。 しかし、さらにエージングを続けたり、レッキとしたオーディオシステムで聞き比べてみた結果、今までの音質が異常であり、このカーボニルコアによる音質が正常である事が判りました。

LPFのコアを音鳴りさせない為には、巻線がコアに密着する事が一番のようです。 その為には、単線より、ビニール被覆のより線で、かつ出来るだけ細い線が有効のようです。 ただし、あまり細いと抵抗分が増大しますので、複数本パラに巻くというのはかなり効果ありました。 最初のNECトーキン製コアに巻いたときもKIV線というビニール被覆でしたが、このコアはフェライトコアを樹脂のケースでカバーしたものでしたので、コアと線が密着するという条件は満たされなかった為、音鳴りしたと思われます。

このコア変更に当たり、フェライトとカーボニルの差が出るものかを確かめる為にデータを取っていますので、以下紹介します。

 

Amtx_2ndharmo

Amtx_carbonil0601

上は、40W出力無変調時の高調波データです。左がフェライト、右がカーボニルです。 コアは変調段の特性には影響しますが、高調波には影響しません。 差があるとすれば9MHz付近の不要輻射レベルです。気持ち的にはフェライトの方が少ないように思えます。

 

Amtx_250k30mod

Amtx_1m0601_2

上は1KHz 30%変調状態で250KHzのPWMスイッチング周波数の漏れを見たものです。 左がフェライト、右がカーボニルです。 250KHzの漏れはどちらもあまり変わりません。不要輻射となるノイズフロアーレベルも同じくらいです。

 

Amtx_1k30mod

Amtx_100k0601_2

上は1KHz30%変調時のキャリア近傍の不要輻射データです。左がフェライトで右がカーボニルです。 このデータもフェライトとカーボニルの差はほとんどありません。 

Amtx_10m0601_2

これらのデータを取る前は、絶対にカーボニルの方が良くなるはずと思っていましたが、フェライトでもちゃんと磁気飽和対策さえ行えば問題ない事が判りました。

また、気にしていた9MHz付近の不要輻射も改めて確認したところ、左のスペクトルのごとくカーボニルコアでも問題はないようです。

従い、このAM送信機はカーボニルコアで進行します。理由は、変調波形のエンベロープは明らかにカーボニルコアの方が歪が少なく、聴感上の歪も、カーボニルコアのほうが少なかった為です。

エージングで壊れて、仮使用しているD1のショットキーダイオードは60V5Aのショットキー2本パラ接続に変更しました。 このダイオードはSMTタイプですので、基板の裏側に移り、写真では見えなくなりました。

ここまでの配線図 AMTX_PP2.pdfをダウンロード

Amtx0526

40Wでエージングを続けて、延べ20時間くらい過ぎたところで、ファイナルから煙が出て出力は10W以下に落ちてしまいました。 しかも、部品の焼ける匂い。 最初、どこで問題が起こったのか判らず焦りました。 1時間くらいああでも無い、こうでも無いとやったあげく、判った原因は終段タンク回路のシリーズコンデンサが絶縁破壊しているものでした。 例の昭和40年代に作られた50V耐圧のセラミックコンデンサです。 たちまち手持ちが有りませんので、2個のコンデンサをシリーズに接続し、とりあえず耐圧を2倍にして使っています。

2016年12月11日 追記

電源として使っているTS930Sの電源回路にある30V以上をプロテクトするツェナーダイオードを廃止して、31.6Vまで電圧を上げる事ができましたので、ダミーロードをつないでいきなり送信にしたら、またまた、終段のタンク回路のコンデンサが煙を出してショートしてしまいました。 やむなく、この昭和のコンデンサは全部廃止し、3KV耐圧のコンデンサに変更したのですが、使ったコンデンサがF特と言われる温度特性管理があまい物だった為、数分も通電すると、容量が変わってしまい、出力が20Wくらいまで落ちてしまいます。 マイカコンは手持ちしていませんので、とりあえず、セラミックコンデンサを全廃して、150Pのエアバリコンに交換してみました。 さすがにエアバリコンは安定しており、エージングしてもほとんど変化はありません。

Amtx_tank

この150Pの送信用バリコンを取り付ける方法を思案しましたが、スペースが無く、やむなく50Pのバリコンに代え、不足の容量はCH特性のセラミックコンデンサでカバーさせる事にしました。 ここで、また昭和のコンデンサが登場です。 しかし、今度は220PのCHコンデンサを4個直列に接続し、50Pのバリコンで出力最大点が探せるようにタンクコイルのタップを選び直しました。 最大出力は60Wとなりますが、リンギングが発生します。 従い、バリコンを容量が増える方向に調整し、50W出力ポイントに固定しました。 ここまでの対策で送信開始直後から50Wとなり、以後出力は変化しなくなりました。

最新回路図 AMTX_PP3.pdfをダウンロード

VFOの製作に続く

13.8V電源による50Wアンプの検討はこちら

INDEXに戻る

2016年5月17日 (火)

シャーシ変更と音質改善

<カテゴリ AM送信機(PWM方式)

有り合わせのシャーシに組んだ回路ブロックは、その配置と距離の関係でRFの回り込みが発生し、それが、変調音の歪となっていました。 そこで、シャーシをもう一回り大きな物に変更し、将来ケース収納も視野にいれた構造とすべく改造する事にしました。

Amtx_pwr

FETドライバーTC4452を2個も使った事からDC12Vのシリーズレギュレーターの電力損失が10W近くになり、長時間のエージングで破壊したのをきっかけに、このレギュレーターをDC/DCコンバータータイプに変更する事にしました。採用したDC/DCコンバーターはサンケン製のMPM80という2Aタイプでしたが、キャリアーを送信した途端、アース線のビニール被覆が火を噴いてICはショート状態で壊れてしまいました。 RFイミュニテイに無防備のDC/DCは自ら壊れると同時に無線機を破壊します。 昔、菊水のAC/DC電源に2mのトランシーバーを繋ぎ、送信にした途端、出力電圧が制御不能になりトランシバーを壊した事を思い出しました。  しかし、またシリーズレギュレーターに戻す事は不可能ですから、今度は新電元の3Aタイプに変更し、入出力にチョークコイルを入れ、RF混入を防止する策をとり、なんとか40W出力でも正常に動作させる事に成功しましたので、 このDC/DCとパワーリレー、コモンモードフィルターなどを小さな基板にまとめてメンテしやすくしました。

RFのD級アンプはほぼ完成していましたが、メガネコアとドレイン間を結ぶワイヤーがリンギングの元になっている可能性がありましたので、これを短冊状の銅板に変更しました。

Amtxe_pp_amp

Amtxe_pp_vd

左上は、配線を銅板に変更した状態。右上はその状態で出力35W時のドレイン電圧波形です。それぞれ、60Vピークくらいです。 ゼロ電位のリンギングが前回より少しだけ改善しました。

Amtx_mod0516Amtx_micftoku0522 

また、変調回路もメンテを容易にする為、左上の写真のように放熱板を基板上に取り付け、D級アンプのFET 2石を基板上に配置しました。 今回、この変調回路にちょっとしたEQ機能を追加しました。 リミッターアンプの2番ピンに270Ωと1μFのパラ回路を追加し、2KHz付近でピークが出来るような周波数特性とし、少しでも了解度のアップを期待する事にします。 右上は、MICアンプからD級アンプのLPFまでの周波数特性です。 低域をカットし、中域を強調しています。 ただし、そのレベル差はわずかです。

D級アンプのLPFについても検討を加えました。 LPFの設計は、RFのD級アンプの動作インピーダンスに合わせる必要があります。 35W出力時の動作インピーダンスは4Ωくらいです。 従い、4ΩでLPFを再計算し、各定数を決め、LPFのコアはNECトーキンのESD-R-47N-Hという品番で200MHzくらいまで使える物に変更してありましたが、このコアはNi-Zn系の非分割タイプでした。

Amtxlpf0501

Amtxnogaplpf

従い、左上の写真のごとく、巻き数も少なく太い線で巻線出来ていましたが、右上の写真のごとく、変調波形に歪が見られました。 正弦波のエンベロープを良く観察すると、レベルが高くなる方向で振幅が抑えられた上下に非対称となっています。 この原因を調査したところ、直流電流重畳によるインダクタンスの変化のようです。 FAT5ではアミドンのT200-26のコアを指定していますが、このコアはフェライトではなく、カーボニル鉄粉による焼結コアです。アミドンのHOMEページから確定した許容DC電流は読み取れませんが、同じようなコアを使っている北川工業のメタルコアMPTRは20AのDC重畳でもインダクタンスは変わらないと言っています。 アミドンが例え20Aまでないにしても、5Aや10Aではインダクタンスに変化は無いと推定できます。 メタルコアの個人による入手は全く不可能ですから、コアをT200-26に変更したいのですが、入手にかなり時間がかかりそうです。 そこで、テンポラリィとして、北川工業の分割コアGTFC-41-27-16にもどし、1mmのエアギャップを2か所確保して、このDC重畳特性を改善したのが、左下のコイルで、このコイルのときの変調波形が右下になります。

Amtxlpf0517

Amtxw_gaplpf

フェライトコアにエアーギャップを設けて、磁気飽和対策をしても、直流電流増加によるインダクタンスの減少率がゼロになる訳では有りませんので、直流電流が、およそ2Aを超え始めると、インピーダンスが非線形になる事を防止する事は出来ないようです。 今後、カーボニルコアを入手できたら、どれくらい改善するか確認する事にします。

Amtx0522

今回シャーシを一回り大きくしましたので、全体の配置は左のようになりました。前回より大きく変わっていませんが、各ブロック間の距離を確保できましたので、RFの回り込みによりDC/DC電源の異常動作、変調音の歪は解消されました。 

また、変調段のLPFが鳴く問題をすこしでも改善する為、このコアを2枚のベーク板で挟みこみ、1mmのUEW線の振動を抑える事にしました。効果はベーク板がないよりはマシというレベルにしかなりませんでしたが、専有面積の削減にはなりました。 

 当初20W以下の出力でD級アンプの電流も2A以下でしたので、D1のショットキーバリアダイオードは3A定格品を使っていました。 出力40W近くになった現在は3Aを超える電流が流れています。 そして、エージング途中でこの3Aのダイオードもショート状態で壊れてしまいました。 とりあえず代用品を使っていますが、なるべく早く大きな定格のダイオードに変更が必要です。 電源入力部分には5Aのヒューズを設けていますが、すでに2回もこのヒューズが飛ぶというアクシデントもありましたので、28Vラインの電流も監視できるように電流計を追加しました。  

変調段を含めた効率は71%でまずまずです。 変調器のD級アンプは95%くらいの効率で動作しているようです。

エージングを続けていると、小出しに問題が出てきます。 日曜日の朝一番にエージングの為、送信にしたら、出力が10Wも出ません。 スタンバイスイッチを何回かON/OFFしているうちに35W出るようになりました。 一度35W出始めると、継続してOKとなります。 この不安定な動作の原因を調べてみると、TC4452の入力レベルがアンバランスで、一方は正常なレベルですが、もう一方は、スレッシホールドレベルギリギリで、温度が低い時は、レベルが下がりプッシュプル動作となっていないのが原因でした。 どうも前段のCMOSインバーターに問題があるようで、オシロでチェックすると、74HC04の出力が電源電圧の半分くらいしかスイングしていません。 ドライブ電流不足かと、インバーターをパラレル接続してみましたが関係なし。 改めてスペックを見ても、7MHzでスイッチングするには問題ないレベルです。  このICは取り付けた直後は実力でOKでしたが、いじっている間になんらかの原因で壊れたみたいです。 残念ながら、このICの在庫がなくなりましたので、手持ちのTIの74LS04に変更する事にしました。

Mm74hc04recomend

Mm74hc04 

ドライバー段で、 このドライブ不足が起こると、基本波近傍の不要輻射が極端に大きくなるようです。 ドライブ不足の状態で音楽を変調しながら、受信周波数を次第に離調させると、20KHzくらい離れた周波数では、歪んだノイズに近い復調音になりますが、受信機のSメーターは同調時に比べ40dBくらい低く指示します。 しかし、74LS04に替えた後は、同じように歪んだ復調音ですがSメーターは同調時よりも60dBくらい低く指示します。 ドライブ不足は不要輻射の増減に大きく関係するようです。

74LS04に変えてから、VR5を調整すると第2高調波レベルが最低になるポイントが出てくるようになりました。 さらに、送信開始すると、従来の調整状態のままで、いきなり出力40Wになります。 以前、エージング中に5Wほど出力がアップすると言いましたが、その原因は温度でコンデンサの容量が変わるのではなく、CMOSインバーターの状態が変化していた事が原因でした。 

ここまでの配線図をダウンロード AMTX_PP1.pdfをダウンロード

カーボニルコアの効果 に続く。

 INDEXに戻る

2016年5月 1日 (日)

パワーアップ40W(D級プッシュプルパワーアンプ)

<カテゴリ AM送信機(PWM方式)

E級アンプの出力は電源電圧によって決まり、パラレルドライブにしようが、プッシュプルドライブにしようが出力は変わらないという事ですが、E級プッシュプル回路の記事はインターネット上に沢山存在します。 私も、最初、パワーが大きくならないプッシュプル回路なんか必要ないと思っていましたが、いざシングルドライブのE級アンプを実際に作ってみると、その第2高調波の多さには閉口しました。 しかし、みなさんがプッシュプルを単に偶数次の高調波対策の為だけの目的で採用しているのではなく、パラレルドライブ同様、負荷インピーダンスを下げてパワーアップも同時に行っていると考え、実験を始める事にしました。

ところが、教科書通りの回路を組んでも、さっぱり効率が得られません。 そこで、E級を止め、D級プッシュプル回路にして検討を開始しました。

シングルドライブの時の第2高調波レベルは-6dBくらいで、7次LPFを使っても-35dB前後にしか減衰できません。 従い、さらに6次のBPFを挿入して、かろうじて第2高調波を-50dB以下にするという状態でした。 これをプッシュプルドライブにすると、LPFなしで第2高調波を-30dB前後に抑制できますので、7次LPFのみで、第2高調波を-50dB以下に抑制できます。 そして、電力効率も向上します。

シングルドライブでドライブインピーダンスを6Ω以下にすると、例えD級アンプでも効率は60%以下になってしまいますが、プッシュプルにして、これが70%以上になるなら、低い電源電圧でも出力を上げられる可能性が有ります。 電源電圧28.2Vで最大出力18WのE級アンプをD級プッシュプルにして、30Wくらいの出力を確保できないか実験する事にしました。

今回のパワーアップ計画は、D級アンプだから80%以上の効率を確保するという目標ではなく、最大許容損失をアップする手立てを行い、例え効率が70%以下になろうが、実運用状態で連続動作可能な最大出力を得る事を目標としました。

まず、回路図です。

AMTX_PP0.pdfをダウンロード (この配線図は初期のもので、最新では有りません。)

D級プッシュプル回路は3.8MHz用のFAT5回路を参考にし、STF19NF20によるシングルプッシュプルドライブで、それぞれ、TC4452というFETドライバーでドライブします。 

Ampp_eamp1

Ampp_eamp2

.

Ampp_pcb

STF19NF20の入力容量はIRF640より30%以上小さいですが、それでもドライブ電流がふたつのICで400mAも必要となります。 その為、28Vから12Vを作るレギュレーターはアルミシャーシに直止めしてありますが、かなり熱くなります。 

今回のD級プッシュプル回路の基板は片面のユニバーサル基板の銅箔面にベタ状態に銅箔シートを張り付け、これをカッターでカットして回路パターンを作成しました。使用する部品は終段のドレイン、ソース間に入るコンデンサ以外、すべてチップ部品で作りましたので、パターン構造は、はるかに簡単です。 各端子間を板状の銅箔で接続し、難しい所は、部品挿入面に短冊状の銅板を配置しました。 これらの構造が功をはくし、今回はリンギング対策が一発で完了しました。

プッシュプルの出力はメガネコアに1ターンの1次巻線の銅パイプの中を2ターンの2次コイルを通し、2次側で共振回路を構成し、その出力が50Ωのインピーダンスになるようにしています。 変調回路からの14VのVdは1次コイルのセンターより供給します。 この回路で最大効率を得る為のアンプの負荷インピーダンスは6Ωくらいになります。 本来のインピーダンスマッチング負荷は3.1Ωくらいなのですが、そのインピーダンスでは、電流増大による損失が増え、ミスマッチの6Ωくらいが最大効率となっているものです。

Vdmaxpower

終段FETのドレインアース間に入っているC4とC67のコンデンサにより最大ピークドレイン電圧を下げる事ができます。このコンデンサが無い場合のピークドレイン電圧は電源電圧14Vのとき、100Vくらいですが、330PFで約60Vまで下げる事ができ、出力はほとんど変わりませんが効率が数%良くなります。 左の波形はドレイン電圧の波形ですが、ふたつのドレイン電圧が180度の位相差で発生しています。 コンデンサ無しの時はこの波形の幅が狭くなって高さが高くなります。 ちなみにこの容量をさらに大きくしていくと、次第に波形が崩れてきますので、一応、教科書通りの波形に近い状態で止めておきます。

2次側のコイルとコンデンサで7.2Mhzに共振させます。 コイルのインダクターを2uHくらいから10uHくらいまで変更してみましたが、劇的には効率は変わりませんでした。 色々検討して、50Ωの負荷に対してQ=5.5くらいになる6uHくらいのコイルにし、それに共振するコンデンサをシリーズにいれます。 調整は仮接続した430PFのエアーバリコンを最大容量から次第に小さくしていきますが、Vdの波形の内、0V付近のリンギングが最少になるような出力にします。 この調整ポイントを超えてさらにバリコンの容量を少なくすると出力最大点がえられますが、このときのVdの波形はかなりリンギングが乗ります。 従い、この最大出力の60~80%くらいの出力状態が最適な調整ポイントになるようです。

この回路では、最大出力は49Wとなりましたので、調整ポイントは30Wと置きました。 この時のLPFを含めたアンプ効率は73%くらいになっております。 

Ampp_eampvc

仮接続のバリコンを取り去り、固定コンデンサに置き換えると、バリコンのもつ浮遊容量の影響で、同じ容量の固定コンデンサでは、うまくいきません。 そこで、数10ピコのコンデンサを何個がパラ接続し、そこそこの出力が得られるようにし、さらに20PFのバリコンを恒久的に接続し、完成した時点で微調する事にしました。 このバリコンはタイト製の送信用ですが、最初100V耐圧のトリーマーを付けていました。 出力を30Wにして、変調をかけた途端トリーマーが絶縁破壊し、煙を出してショートしてしまいました。かなり高電圧になるようですので、バリコンの耐圧には十分注意が必要です。 ところで使用している固定コンデンサは昭和40年代に生産された50V定格の円板タイプです。 従来より100Wのアンテナチューナーにも使用しており、このコンデンサが絶縁破壊した事は有りません。

変調段は現在のFKI10531 1石でも計算上はピーク160Wのドライブが可能なのですが、どうせFETも余っていますので、TC4422のFETドライバーはそのままで終段だけ2石のパラレルドライブとしました。 また、約6Ωの出力インピーダンスにマッチするLPFを再計算して、2次のフィルターとしました。

LPFは-3dB:8500Hz 250Khz:-60dBとして算出した L=159uH, C=4.4uFとしてあります。

Ampp_400hzmod

左は、30W出力で最大変調度の時の波形です。 変調回路のデューティを調整し波形のピーク部分はクリップしておりますが、最少レベルでキャリアがゼロにならないようにしてあります。 しかし、変調のエンベロープは決してきれいでは有りません。 ピークがとがったような波形をしています。 ピーク時に正帰還がかかっているような波形です。

今回、従来の配置のままでパワーアップしましたので、D級アンプからの回り込みが発生して、低周波で発振しました。 やむなく変調回路とRF回路の間にシールド板を建て静電結合を削減しました。 しかし、まだこの結合に伴う変調信号の歪が生じている感じです。 もう少し大きなシャーシに変調部とRF部を完全に分離できるような配置の再検討をする事にします。

 

Ampp_30wout

左のスペクトルは40W出力時の高調波レベルです。 前回使ったTS-930S用の7MHz BPFは有りません。 7次LPFのみで第2高調波は十分減衰しています。 逆に3次の高調波はシングルの時より増えていますが、OKレベルです。 実際に運用する場合、6次BPFを付けて使います。 また、変調波形の改善の為、RF回り込み対策や、LPFのコア変更など再検討する事にします。

一応、30W出力で1時間以上のエージングテストを行い、異常なしでしたので、続けて40W出力状態で1時間以上のエージングテストを実施しました。 今回、用意したPCのCPU用放熱板をファンで冷却していますが、ほんのりと暖かくなります。推定温度が45度くらいです。 この40W出力時のE級アンプ効率はLPF込で73%でした。 使用しているクラニシの終端型電力計はかなりあっちっちになっています。

さらに、数日間連続テストを行った結果、数時間のエージングで出力が5Wくらい上昇する事が判りました。 原因は温度上昇で、同調用コンデンサの容量が変化するもののようです。 シルバードマイカコンデンサを使えば問題ないのでしょうが、そこまでする必要もありませんので、常用出力を35Wにして運用するつもりです。 

後日、このエージングで出力が上昇する真の原因はコンデンサの容量変化ではなく、74HC04の性能が変化する事が原因と解りました。 使ったICの能力不足が原因だったみたいです。

全体の構造は前回の18W出力用とほとんど変わりません。

TSSに提出したブロック図を添付します。

3rd_TX_AM_PP_BlockDia.pdfをダウンロード

Ampp_all

35W出力のAM送信機が出来上がったように見えましたが、エージングを継続するにつれ、予想したオーディオの周波数特性が得られなかったり、レギュレーターが壊れたりと問題が続出しました。 変調音の歪はRFのフィードバックが最大の原因で、各ユニットの配置再検討は避けられなくなりました。

シャーシ変更と音質改善 に続く。

INDEXに戻る