« 2024年7月 | メイン | 2024年9月 »

2024年8月26日 (月)

Z-Match ATU ステッピングモーター

カテゴリ:オートアンテナチューナー(ATU)の製作

前回の記事はこちら

バイポーラステッピングモーターとモータードライバー及び5V2AのDCDCコンバーターがそろいましたので、初めてのステッピングモーター動作確認です。 確認する為に、まずPICでモータードライバーのテストプログラムを作ります。

テスト回路配線図 steping_motor_test.pdfをダウンロード

テストプログラム STEPPING_MOTOR_Test.cをダウンロード

実際のATUの場合、EEPROMが1Kバイトは必要になりますが、手持ちが無いので、NB-ATUのコントローラーに使っていたPIC18F25K42でテスト用のプログラムを作り、モーターを思うようにコントロールできるかどうかのテストです。 テストプログラムはTimer1で周期的な割り込みを発生させ、割り込みが発生する度にモーターのSTEP入力を反転させます。 反転周期の2倍がワンクロックとなりその逆数がクロック周波数となります。実験ではクロック周波数100Hzで行いました。 またこのSTEP入力は常時LレベルでMOTOR ON SWを1回押すと、指定したパルスの数だけクロックが発生し、最後にLレベルで停止するようにソフトを組んであります。 ソフトの行数が多いのはMOTOR ON SWのチャタリングを除去する為の処理です。

17hs3401s

上の表に出てくるモーターの型番の最後にSの文字が付きませんが、この実験で使用しているモーターの型番は17HS3401Sで、中文で書かれた仕様書では、定格電流1A, 定格電圧7.3V、コイル抵抗3.4Ω となっており、他の解説資料に書かれている、定格電圧=定格電流xコイル抵抗 の定義に合いません。 そこで電圧3.4Vの電源と電流リミッターを0.25Aに設定して、テストを開始しました。 基本となるワンステップ1.8度の回転は成功しましたので、次は基準の1/2となるワンステップ0.9度にトライ。 ところが、うんともすんとも言わず全く動きません。 配線がわるいのかと全接続をチェックしましたがまったくダメ。 電流制限を1Aにしてもモーターが起動しません。 試しに1/4はどうかとテストすると、やはり起動しませんが、電源OFF状態でモーターのローターを何度分か回転してやると回転を始めます。一度回転を始めて、止めてまたONしてもちゃんと回転します。 起動トルクは1/2ステップより1/4ステップの方が大きい様です。 従い、以後、1/4ステップのみで実験を継続する事にしました。

そして、確実にモーターが起動する為には、モーター電圧は5V以上、電流制限は0.75A以上の設定が必要という事がわかりました。 安定してドライブ出来る為にはモーター電圧6V、電流制限1Aとし、モーター回転中、及び停止中の12V電源の消費電流は0.45A程度で有る事が判りました。 この状態は、ステッピングモーターの解説書にある定格電圧の2倍くらいの電源電圧に設定し、電流を定格以下で使うという説明にはまだ合致しません。さらに停止中は電流制限を0.2A程度まで落としても、静止トルクは指では回せないくらい大きい状態で、この時の12V電源の全電流は100mA程度になりました。 この静止トルクを維持出来る最低電流は再検討する事にします。

この実験の中で、得られたその他の情報で重要なのが、電源OFF時の停止位置と電源ON時の起動位置の誤差でした。1.8度ステップ以下のステップの途中で停止したモーターは電源をOFFしない限り、停止した位置から起動しますが、一度電源をOFFすると、静止トルクは無くなり、一番近い1.8度の停止角度の位置に移動してしまいます。 次に起動するときは、電源OFF前の位置からずれた角度位置から起動する事になります。 この事は、電源を再投入する毎に機械的位置のイニシャライズが必要であると言う事です。 これは、バリコンの最大容量または最小容量の位置を電源ONする度に何らかの手段で検出し、その位置をゼロ番地として回転ステップ数を刻む必要がある事になります。 さらに、このイニシャライズ動作時は基準ステップ(1.8度)で駆動しないと駄目だという事も判りました。

ATUの電源をONにしたらその後電源を切る事ができませんので、モーターSTOP中の電流を最低レベルに切り替える回路を追加必要です。 さらに、モーターがSTOPする度に、現在位置をEEPROM上に記憶させて置かないと、電源OFF後に前の状態に復帰出来ないという事になります。 さらに、受信中も電源をOFFできないので、この間に発生するノイズも確認しておかねばなりません。 モーター駆動中はPWM電流でドライブしていますので、それ相当のノイズが発生するとは考えられますが、モーターOFF時の電流制限もPWMで行っているので、ノイズは消えません。 いずれにしても、事前確認が必要です。

Mdriver3

上の写真はテスト用のマイコン基板とモーター、DCDC電源、電流制限値(0.2x5A)を測りながらテストしている状態です。 電流制限は1Aですが、モータードライバーのパッケージを指で触ってもほんのりと温かいですが、ずっと触っていられる状況です。 メーカーの説明によると基板が熱伝導の良い金属製の基板に絶縁膜を作りその上に導体を印刷した構造の物で、基板自身が放熱板になっているとの事。さらにその基板に銅製の放熱板をハンダ付け出来るようにしてありますが、私が使うATUでは、追加の放熱板は不要です。 写真の基板上には配線図にない部品も映っていますが、NB-ATUのコントローラーで使用した部品がそのまま残っています。実際に配線されている部品は配線図通りです。

Mdriver2

左が、約1000円のモータードライバーですが、最初、この基板の裏表を間違って、ピンを半田付けしてしまい、一度半田付けしたpinを一本づつ引き抜いて再半田する羽目になってしまいましたが、壊れもせずにちゃんと動作しています。

テスト基板に直接ハンダ付けしてしまうと、本番の基板に移すのが大変ですから、ICソケットを用意して、抜き差し出来るようにしましたが、このドライバーに付属していたピンは太くてICソケットに挿す事が出来ませんでした。 秋月で手配した細いヘッダーピンがありましたので、これに交換して、写真のように実装出来ました。

 

モーター停止時のみ電流制限値を小さくする為、VREF信号が(2)ピンに接続されるよう基板の裏にあるショートパターンをハンダでショートしてあります。

モーター静止状態のロックトルクを確認しました。 制限電流設定で50mAでは手でモーター軸を回す事ができますが、100mAの場合、軸を回す事が出来ません。 設定は余裕を取って150mAとします。 この時の12V電源側の電流は25mAでした。 25mAはリレーを1個ONしている状態に等しく、電源的には全く問題有りません。 

次にノイズの確認です。 受信機のアンテナ端子に接続された同軸ケーブルの先端に50cmくらいのワイヤーを接続し、このワイヤーをモータードライバーのICの上に置いてみました。 すると、モーター停止中、回転中いずれも、SメーターがS8まで触れます。 最大の振れは28MHzでした。 ICとワイヤーの距離を30cmくらい離すとS3くらいまで落ち、1m離すとS1くらいになります。 モータードライバーの回路はシールドした方がよさそうです。モーター電源をOFF するとノイズは無くなりますが、1.8度の基準ステップ以下のマイクロステップモードで使う場合、電源OFFしたとたん、モーターの停止位置が一番近い基準ステップの位置に移動してしまうので、電源をOFF出来ません。

この実験の途中で新たな問題が発見されました。 モーターが回っていないときは電流制限を150mAに設定し、モーターが回り出す150msec前に電流制限を1Aに変更してもモーターが起動しません。 電源投入時点よりずっと電流制限1Aにして置き、一度モーターが回転したあと、停止した後で電流制限を150mAにした場合、次のモーターON前に電流制限を1Aに変更すると正常に動作します。 

このイレギュラーの動作を解消する為に、カット&トライを繰り返した結果、以下のシーケンスで完璧に動作するようになりました。ここまで判ったのが10月中旬の最後の金曜日でした。 モーター電圧は7.3V、電流の制限値は250mAです。

①マイコンICのSTEPパルス発生用のタイマーをOFFにする。

②電源投入直後nENをL(active)にして置き、STBYモードで1/4マイクロステップの設定を行う。

③10msec後にSTBYを解除して、さらに10msec待つ。

④以後、モーターを回す前に必ず該当するタイマーをONし、モーターをストップさせた時は必ずタイマーをOFFにする。

⑤1.8度の基本ステップで動作させたい時はMODE1,MODE2をLとして、1.8度ステップの動作が終了したら、設定済みのマイクロステップモードに戻す。

⑥以後、①から③までの処理は行わない。

これで正常に動きだしました。モーター回転中の12V電源の電流は150mA弱、STOP中は25mAです。 そして、このモーターの仕様書を目を凝らして読むと、どうもコネクターの並びが逆ではないかと疑いが生じました。

Driverconnector_1

そこで、コネクターを180度反転してみました。すると、1/2ステップモードでもモーターが回転するようになったのですが、ワンステップ1.8度のノーマルステップでした。その他に、1/8とか1/16を試しましたが、1/8と1/16は同じステップで1/16くさいです。 もしかしたらモーターの構造により、IC屋が意図したドライブタイミングの通り動作しない事もあるのかも知れません。 幸い、1/4ステップは正常に動作していますので、良しとします。

モーター停止時、電流制限を小さくする手段、nENを制御する手段を追加した回路図とテストプログラムです。

配線図:steping_motor_test_1.pdfをダウンロード

ソフト:STEPPING_MOTOR_Test_1.cをダウンロード

ここに示しました、モータードライブプログラムは、初歩的な動作確認用です。 実際に実用しているプログラムでは有りません。 もし、実用的なプログラム例が必要な場合このページを参照して下さい。

 

一応ステッピングモーターの動作確認ができましたので、バリコン駆動機構の設計にとりかかります。 このATUは中古のコメットのMTUのケース内に収納する予定なので、機構のサイズを含めて検討開始しました。

 

INDEXに戻る

2024年8月12日 (月)

Z-Match ATU

カテゴリ:オートアンテナチューナー(ATU)の製作

10数年前に、160m対応のATU候補として試作し、低インピーダンスのアンテナに対する整合テストを行い、ロスが多いと一度は諦めたZマッチアンテナチューナーでしたが、MMANAで計算しただけのアンテナインピーダンスは、実際のアンテナとかけ離れており、どんなに低くても実際の160mバンド用アンテナの実測値は12.5Ω以上になる事を実践的に確かめてきました。 もう一つの難題は高耐圧の2連バリコンの入手でした。 バリコンそのものが生産縮小され、価格も大幅に上昇していましたが、たまたま、コメットのMTUで使われている高耐圧バリコンを4個ほど入手できました。 これをステッピングモータとタイミングベルトで同期ドライブを行い、2連バリコンを実現出来る環境が整ってきました。 さらに、バリコンを使ったハイパスT型のATUにもトライしましたが、コイルのタップ位置で偽のSWRディップポイントにはまり、そこから抜け出せないという問題も有り、コイルのタップ選択が不要なZ-MatchアンテナチューナーのATU化に向け再検討する事にしました。

まず、Z-Matchの基本であるVK5BR OMの資料を読み直し、推奨するコイルの通り空芯コイルを製作し、ATU化する為の基礎データを取得する事にします。

Zmatchmtu

左の回路はVK5BRが推奨するZ-Match MTUのコイルとバリコンの配線図です。検討の都合でオリジナルの回路図に有ったL3は省略してあります。 このMTUの説明の中で、L2の底辺とL1の底辺はGND側で一致させるとありましたので、その通り試作しましたが、彼の資料の中にある写真ではGND側では無く、天面にL2を配置してありますので、もし、違ったら、写真のごとく、コイルを上下反対にすれば良い事なので、このまま行きます。

 

Zマッチチューナーの肝はコイルですから、VK5BRが推奨する線種、サイズ、形状のままでつくりますが、コイルを支える絶縁材は100均の5mm厚のまな板でつくりましたので、1.6φの銅線を通す、穴径は2mmでは難しく、2.5mmにしました。 また、最初直径50mmのパイプに、1.6φの銅線を16回巻き、これをカットした後、絶縁支持材の穴に銅線を押し込みますが、これが結構難しく、きれいな円弧状のコイルに仕上がりません。 結局、最後は板とコイルの間に直径25㎜の塩ビパイプを挟み、さらにL2とL1のコイルの間に5φのアクリル棒を差し込み、コイルの形を整えました。

Zmatchcoil1

Zmatchcoil2

右上は25φのパイプと5φの丸棒を抜き取った状態ですが、なんとか様になりました。

これを、木製のシャーシーに仮止めし、かつバリコンも仮止めして、配線図通り配線しました。 2連バリコンはまだ連動出来ていませんが、タイミングベルト、タイミングプーリーが入手できたら、連動させる事にし、それまでは、手で目見当で回転させます。 また、VC1はシングルで良いのですが、コメットのバリコンは2個連結されていますので、配線のみカットし、シングルバリコンとして使います。 最終的には、2個のバリコンを結合している支持材をカットしますが、今は写真の通りです。

構造が簡単ですので、配線も20分足らずで完成しました。

Zmatchmtu2

次はいよいよ整合テストです。

整合テストはまず7MHzでつまづきました。いくらやってもSWR1.8以下になりません。 色々試して判った事は、VC2を接続するコイルの位置は14Tでは無く、13.5Tに繋ぐとSWRが1.4まで下がるようになりました。 さらに、VC1のつながるコイルのタップ位置を10Tの位置から9Tに変更してやっと1.1まで下がりました。 この原因は、配線の長さも関係しますが、使用しているバリコンの最小容量が影響しているようです。 VK5BRオリジナルのバリコンの最小容量は20Pですが、コメットのバリコンは30Pでした。

ここまでやって、やっと3.5MHzから29MHzまで全部整合出来るようになりました。

次にバリコンのクリチカルの度合いですが、現在ステッピングモーターの候補は秋月で扱っているコパルの3度ステップ品を第1候補としています。 最近の3Dプリンターは1.8度ステップのバイポーラタイプのステッピングモーターが使われ、中華製に絞れば一番安価です。しかし、バイポーラタイプのステッピングモーターは低電圧大電流というドライブが必要で、専用のドライバー回路と専用のスィッチング電源を必要とし、アマチュアが1台限りで製作するには、かなり高コストになります。 アマチュアがシコシコと製作するには、最近あまり見かけなくなったユニポーラタイプのステッピングモーターが取り扱いが簡単なのですが、1.8度のユニポーラタイプはコパルの4倍以上の値段がします。

コパルのワンステップ3度のモーターの場合、5対1の減速比となるプーリーを使い最小ステップ角度0.6度になりますが、これで、ちゃんと整合できるのか心配になります。

実験した結果、一番クリチカルなバンドは28MHz帯でSWR1.01くらいから1度違えばSWR3くらいまで跳ね上がります。SWR1.5までを許容値とすると、0.4度くらいがリミットで、コパルの0.6度ステップは微妙という状態です。 コパル製は350円、1.8度のユニポーラタイプは最小ステップ0.36度になりますが、1640円。 

今回の試作機の場合、VC2とVC3の容量が一致した連動状態のままでは、SWR1.1以下の状態にならないバンドがありました。 12年前にラフに作った試作1号機ではこれほどのクリチカルさは無かったような記憶でしたが、バリコンは連動のままで整合できました。 そして、1号機の時にあった無負荷状態で整合してしまうという問題は再現出来ませんでした。 当時の1号機はQが低く、調整が楽だった代わりにロスが大きかったのかも知れません。 そこでよりQを高める為に、今回の試作機の配置を見直し、配線が最短となるように組みなおしてみました。

Zmatchmtu3

まだVC3への配線が長いですが、改造前より線長で50cmくらい短くなり、かつコイルの下にはGNDとなる銅箔シートを敷き、これにコイルやVCのGNDを落とすようにしたところ、コイルのタップ位置はVC1の接続位置が9Tになった以外、オリジナルの配線図の通りで、3.5MHzから28MHzまでVC2とVC3の角度はほぼ同じ状態、すなわち連動した状態で整合出来るようになりました。 

ステッピングモーターのワンステップの角度については前述しましたが、3Dプリンターにはなぜ1.8度のステッピングモーターが使われているのか調べてみました。 普通に考えたら、あの細かい造形を行う為には1.8度では粗すぎると思えるからです。

バイポーラタイプのステッピングモーターの場合、基準のワンステップ角度に対して、さらに1/2とか1/4の角度にドライバー側で設定できるという説明があります。バイポーラステッピングモーターに使われているドライバーユニットがモーター本体より高価な場合が多いのですが、このドライバーの中で細かく制御する事により、この基準の公称ステップ1.8度をさらに1/2とか1/4のステップに変更できるらしい。 最大で1/256まで可能という資料もありました。 以前はワンステップ1.25度とか0.9度とかのステッピングモーターが有りましたが、最近はほとんど1.8度に統一されているのもうなづけます。

この情報が判っていたら、3Dプリンターでは標準となっている3:1のタイミングプーリーより高価な5:1のプーリーを手配する事は無かったのに。

以上の経緯から、コパルや1.8度のユニポーラタイプを諦め、中華製の安いバイポーラステッピングモーターを2個手配しました。注文した4日後には届きました。2個で1900円弱でした。

このバイポーラタイプのドライバーは秋月で取り扱っていますが、モーターより高価(2台分で2000円弱)です。 中華製なら1台分、600円台であるのですが、使い方を説明した資料がありません。 秋月のドライバーの場合、メーカーのホームページに制御の仕方や発熱についての注意文などが有り、初めて使うには安心です。 そして、基準ステップ角の1/2から1/256までの設定方法も詳しく書かれていますので、中華製ですが、秋月のSTマイクロ製のIC品で進行する事にします。 ただし、基準の1.8度以下のステップにした場合、停止位置で通電を続けないと基準の1.8度の位置に戻ってしまうという情報もあります。 対策として、停止位置をキープする為に、運転中より低い電流を流し続けるというアイデアもあるそうですが、この現象がATUにどのような影響を与えるかは、作ってみないと判らないです。

モーターとプーリーが手に入り、図面化しないと、タイミングベルトの長さが決まらないので、ベルトの手配は最後になります。

また、1.8MHz対応は私のアンテナに合わせて、リレーで切り替える事にします。

 

ステッピングモーターとドライバーが入手出来ましたので、動作確認をしました。

 

INDEXに戻る