« 2014年4月 | メイン | 2014年6月 »

2014年5月19日 (月)

インピーダンス変換トランス

<カテゴリ:アンテナチューナー>

以前、マッチングトランスによるアンテナチューナーを紹介しましたが、その時使用したインピーダンス変換トランス、いわゆるUN-UNですが、実際のインピーダンス変換能力は7MHz程度までが限度で、それ以上の周波数では、急激にSWRが悪化していました。これは周波数が高くなるにつれ、トランスのリアクタンス分が増加しているのが原因でした。 ただ、このチューナーは、リアクタンスのキャンセル機構がついていましたので、トランスにリアクタンスが有っても、アンテナのリアクタンスを含めてキャンセルできる為、28MHzまで使う事が出来るものでした。

今回、すでに共振しているけど、その時のインピーダンスが50Ωではないというアンテナの整合を目的に、21MHzで使えるステップダウントランスの試作を行いました。 ところが、なかなかうまくいきません。 以下、途中で投げ出してしまいましたが、現状を紹介します。

使用するコアはFT-140#43です。  目標とするアンテナのインピーダンスは28Ω。できたら28Ω近辺でインピーダンスを選択できること。

トランスの巻き数比の2乗がインピーダンス変換比になりますので、28Ωが欲しい時は1次:2次の巻き数比を4:3にしてやれば実現できます。 また、5:4の場合32Ωが、3:2の場合22Ωが実現できますので、5個のコイルをシリーズに接続し、できたタップ位置に入力や出力を接続すれば、SWR1.2以下が実現できそうです。

理屈は判りましたので、コイルをコアに巻き込んでみました。 コイルは8ターンで5個シリーズに接続しました。アンテナアナライザーとダミー抵抗で測定すると、1.8MHzではほぼ理屈通りのSWR値がえられますが、7MHzでSWR1.5を超えます。14MHzではSWR2.5を超え、21MHzでは3以上です。

コアや線材、巻き方がダメなのか?試しに、1:4のステップアップトランスを作ってみました。

8ターンのコイルを2個用意し、これをシリーズに接続し、GNDとセンターにアンテナアナライザーを、GNDと2個目の端に200Ωをつなぎ、SWRを測ると、14MHzでSWR1.5くらいになり、21MHzでは2を超えます。 8ターンのコイルが多すぎるのかと、いきなり4ターンまで落としてみました。すると、1.8MHzから50MHzまでSWR1.3以下です。このとき2本のワイヤーは平行して巻かれておりましたので、これを互いによじってみました。すると、なんと1.8MHzから150MHzまでSWR1.2以内に収まります。 

SWRが悪かったのは巻き数が多すぎた事と、線をよじってなかった事が原因のようです。 この150MHzまでうまくいったUN-UNに12Ωの負荷抵抗を付け、ステップダウントランスとしたときのデータを取ることにしました。アンテナアナライザーをGNDと2個目のコイルの端につなぎ、GNDとセンタータップの間に12Ωをつなぎます。 1.8MHzではSWR1.05くらいですが14MHzでSWR1.5を超えます。21MHzでは2を超えてしまいます。 ステップアップはうまくいったのに、ステップダウンは全く使い物になりません。 インターネットで調べていくと、コイルを複数パラに接続する方法が見つかりました。ただ、どれもインピーダンス変換比は固定で、複数の変換比を得るものはあまりありませんでした。あっても、その変換特性は公表されていませんでした。

コイルを複数個パラに接続してつくるUN-UNは広帯域性が改善されるようなので、5個のコイルをシリーズに接続したものを4組つくり、これを全てパラレル接続したUN-UNを試作し、その特性を実測してみる事にしました。

Ztrans1

Ztrans3

左上がコイル結線図。イラストは2組パラレル接続ですが、実際は4組パラレル接続です。右上は実際にコアに巻いた状態です。

Ztrans4_3

  上の表が、実際の測定データです。

ダミー抵抗にカーボンタイプの可変抵抗を使っている関係で可変抵抗単体のSWRは28MHzで1.2くらいあります。従い、「3-2」の28MHzでのSWR1.1はトランスのリアクタンスと可変抵抗のリアクタンスが互いにキャンセルしあい、良い数値を示しているもので、その他のすべての28MHzデータも本当の値ではない事、とコメントしておきます。

また、R実測値は1.8MHz時の抵抗値ですが、周波数を変えると、変換される抵抗値も変化します。各実測SWR値はその周波数で最良となる抵抗値に調整した時の値です。

この結果から、21MHzでは22Ωから139Ωの範囲内なら使えると思われます。

とりあえずここまでは出来ましたので、次は21MHzに同調したアンテナを用意する事にしました。 現用のスカイドアループがMTU位置で21MHzに共振するようポリバリコンを直列に入れ調整すると、21.2MHzで共振するようにできました。ところが、この状態のままでインピーダンスが50Ωくらいになっており、SWRは1.0に限りなく近いです。 従い、トランスを挿入する意味がありません。 ちなみに1対1のトランスを挿入すると、トランスの残留リアクタンスで共振周波数がずれてしまい、かつインピーダンスもずれ、SWR1.5以下に調整できません。 結局、インピーダンス変換トランスは不要になりました。 

今回の実験は、T型アンテナチューナーより帯域幅を広げる目的で行ったのですが、SWR1.5以内の帯域幅がT型の場合、230KHzであったのに対して、今回のバリコンだけの整合器は240KHzとなっただけでした。帯域幅が狭いのはスカイドアの特性そのものの様です。

この21MHz用バリコンのみの整合器は天候により、共振周波数とインピーダンスが大幅に変動し、雨が降ると使い物にならない事がわかりましたので、 結局、またT型アンテナチューナーに戻ってしまいました。

出ているタップを全て使い、HF帯をフルカバーできるUN-UNの実現に取り組みましたが、完成させる必要が無くなり、途中で投げ出す事になりました。 また、気が向いたら検討しようと思います。

INDEXに戻る

続きを読む »

2014年5月 5日 (月)

サイドトーン回路追加(ウィーンブリッジ発振回路)

<カテゴリ:KEM-TRX7-LITE>

このトランシーバーのPICマイコンの中に、CWモニター用のサイドトーン発振器が内臓されており、CWのキーイングに同期してモニター音が出力されるのですが、約10秒に1回このサイドトーンが途切れます。 たまたま、キー操作のマーク信号の時、これが発生すると、キー操作をしばしば誤ります。 原因は、10秒に1回、現在の設定状態をフラッシュメモリーに退避させていますが、これに同期して出るバグです。 この現象は、モニター用のサイドトーンのみで、送信されるキャリアーは正常に出ていますので、時々キー操作を間違いながらも使ってきました。

最近、このトランシーバーの使用頻度が高まるにつれ、サイドトーンの途切れが気になり出しました。対策は、送信モードの時のみ、メモリーへの退避動作を禁止したらいいのですが、PICマイコンの中をいじれないので、PICから出力されるサイドトーン信号は使わずに、独立したハードによるCR発振器を設け、これを、内臓したエレーキー回路でON/OFFしてやる事にしました。

Croscpcb

約850Hzの正弦波発振回路は、OP-AMPによるウィーンブリッジ式のCR発振器です。    CR発振器できれいな正弦波を出力させるには、発振回路の出力安定が重要です。 この為、OP-AMPの負帰還量を自動的に制御する必要がありますが、今回、この制御の為にバイアス回路内蔵のデュアルゲートMOS FETを使いました。 UHF帯の増幅用FETを製造しているメーカーなら大抵製品ラインの中にあります。 簡単な回路配置で、DCから430MHzまで10dB以上の増幅が出来るので、私は好んで使っています。 しかし、かなり特殊なFETなので、バラ売りはあまり有りません。   今回は、ばら売りされているNXP製のBF1211WRというFETを使いました。 (ルネサスの場合BB504が相当しますが、生産中止予告品。バイアス回路無しなら3SK318)  このFETはG2の電圧を可変すると、40dB以上のATTをかけられる為、本来のUHF用LNAとしての使い方以外に、AGCやATTとしても利用しています。 今回はG2の電圧でドレインソース間のインピーダンスが変化するのを利用して、OP-AMPの帰還量制御に使いました。   最初バラックで組んで、基礎検討を行い、実用になるように各定数を詰めていきます。検討は片面の2.54ピッチの蛇の目基板に1608タイプのチップ部品を並べて行います。 離れた位置にある部品の接続は裸銅線を使い基板の裏側でつなぎます。 部品装着面でのワイヤーが少なくなり、部品交換がかなり楽になります。 しかし、チップ部品ですから、拡大鏡を併用しながらかなり根気のいる作業です。

Croscwave

Crosckey_3

左上が、850Hz連続発振時の出力波形、右がキーイングによる波形です。

正弦波は負帰還と制御回路のCR定数をもう少し詰めると、さらにきれいになるようですが、CWモニター用としてはこれで十分ですから、ここらへんで妥協しました。 また、キーイングはソフトスタートになるよう、いつもは発振停止していて、キーダウンが有ったら、初めて発振開始し、キーアップで発信停止するようにしましたので、連続波をスイッチ回路で断続する時に比べ、はるかにキークリックが少なくなっています。

Croscbin

こうやってできた小さな基板を、QRPトランシーバーのシャーシに両面テープで張り付け、配線してやると、出来上がりです。

実際に送信すると、OP-AMPに送信出力が回り込み、モニター音がとぎれとぎれになります。OP-AMPの+と-の入力の足に1005タイプの1000Pのコンデンサを直付けしてやると、異常が無くなりました。 安心の為、この基板をアースされた銅板でカバーしています。

これで、移動運用も楽しくなりそうです。

今回、作成したCR発振器の配線図は以下からダウンロードできます。R9は最初22KΩにしましたが、小さすぎた為シリーズに18KΩを足して実験し、うまくいきましたので、そのままになっています。39Kでも良いかも知れませんが、確認しておりません。 また、コンデンサは実装した時点で容量がいくらか判らなくなりましたので、間違っているかも知れません。

ウィーンブリッジ発振回路の回路図をダウンロード

INDEXに戻る

続きを読む »