« TFT LCDによるアナログメーター 3 | メイン | アンテナアナライザーの製作(広帯域発振器) »

2015年6月 3日 (水)

アンテナアナライザーの製作(センサー回路)

<カテゴリ:アンテナアナライザー>

TFT LCDを使い、アンテナアナライザーの表示部分の試作を行いましたが、実際に動作させるには、アンテナアナライザーのハード部分が必要になります。 手っ取り早いのは、市販のアンテナアナライザーを買ってきて、そのアナログ回路から必要な信号のみをもらい、マイコンのADにつなげばテストはできますが、それでは、自作の意味がありませんので、多少時間がかかろうとも、アンテナアナライザーの自作にトライする事にしました。

アマチュアがRF回路のかたまりの製品を自作しようと思ったとき、一番困るのがプリント基板です。 メーカーに頼めば、数万円かかりますし、自作しようとすると、メーカーに依頼する以上の初期投資が必要になります。 ここにあまりお金をかけたくありませんので、最高周波数を、手作りでなんとか扱える50MHzバンドまでに限定し、代わりに136KHzをカバーできるアナライザーとする事にしました。

Aasensor1左の写真は2.54mmピッチの蛇の目基板に1608のチップ部品を載せて作った、インピダンスブリッジとセンサー回路です。 

この基板の裏側には厚さ0.1mmの銅箔を両面テープで張り付け、両面基板と同じ構造にした上で、アースが必要な部品は、銅線によるスルーホールで裏側のGND面に直につないであります。

Aasensor2

3個の49.9Ω抵抗でブリッジを組み、4個めの抵抗の代わりに、M型コネクターをつなぎ、ここにアンテナを接続します。 ブリッジ回路には、ショットキーダイオードによる検波回路を3回路接続し、アンテナのインピーダンスに比例したDC電圧、アンテナのSWRに比例したDC電圧、広帯域RF発振器にNFBをかけて、全帯域でフラットな出力を得る為の発振出力に比例したDC電圧を出力させます。

このセンサー部分の構造で、使用可能な最大周波数が変わります。この手作り疑似両面基板の場合、50Ωのダミー抵抗を接続した場合、100MHzくらいまで、SWR1.0をキープできますが、200MHzくらいまで、周波数を上げるとSWR1.1くらいになってしまいます。 もし、500MHzくらいまで、SWR1.0をキープしたい場合、ガラエポによる正規の両面基板に、全てチップによる部品を実装し、これでもかと言われるくらいスルーホールを追加しないと実現できません。 クラニシのアナライザーを修理した時、ほとんど、リード付の抵抗、コンデンサやダイオードを使っており、200MHz以上で、SWR1.1以下にならず、その実装に苦労した事がありました。 類似モデルを再設計したときの対策は、ストリップラインを短くする事。 短く出来ない場合、GNDと信号ラインを可能な限り幅広くしました。 VCCラインや制御用ラインは基板が生産できる最少幅(0.2mm)まで狭くし、その代りGNDと信号ライン(200MHzが流れるライン)は3mmくらいまで拡大した結果300MHzまでSWR1.01をキープできました。 ここで、悟った事は、少なくともブリッジを組む回路だけはチップ部品を使うという事です。 クラニシのアナライザーでも、ブリッジの50Ω部分だけはチップ部品を使用しています。 ただし、ブリッジの回路に接続する検波用ダイオードがリードタイプの為、これを交換したとき、なかなか正常時のSWRが確保できず何度も作り変えた事がありました。

また、周波数カウンターの入力信号用として、プリスケーラーで1/2分周した信号を取り出します。 周波数カウンターのカウントに使うマイコンは、最大カウント周波数として50MHzまで保証されており、例え54MHzでも実力で動作しますので、本来はプリスケーラーは不要なのですが、発振回路と同じ周波数の信号を引き回しますと、異常発振が起こる可能性が高く、あえて周波数を下げてあります。 異常発振対策としては、1/2より1/4分周のほうがより安定しますが、この分周比を大きくすると、カウンターのゲート時間も、その比の分だけ長くする必要が生じます。 今回は100Hz単位での周波数表示を行いますので、基本のゲート時間は10m秒必要です。 これに1/4のプリスケーラーを設けると、ゲート時間は40m秒必要となります。カウンターの周波数表示は40m秒でも問題ありませんが、インピーダンスやSWRの元データ取得周期も40m秒間隔となりますので、後々弊害が出るかも知れません。 とりあえずここは1/2に留めて置きます。

センサー部分に使う検波用ショットキーダイオードは、非常に重要で、今回は、壊れにくいロームのRB521Sというものを使いましたが、高周波用ではないので、20MHz付近を過ぎたあたりから、次第にDC出力が落ちてき、50MHzでは約30%くらいダウンします。 そこで、430MHzでSWR計に使用した実績のある、RB751Sを秋月から購入し、交換しました。 同じようなDC検波テストを行うと50MHzで約5%のダウンです。 DC出力が5%ダウンしたら、インピーダンス指示も5%ダウンする訳ではなく、NFB回路が動作して、指示は変化が無い代わりに、RFの出力が5%上昇します。 5%のRF出力上昇は一応許容範囲ですので、RB751で進行する事にします。

ただし、RB751は電流容量が小さいので、破壊耐力も小さくなっています。  メーカー品のアナライザーに使われているショットキーダイオードはGHz帯まで使えるものを使用しているようですが、これらの破壊耐力はもっと小さくなっています。この為、かなり特別な対策を行っているようです。 

MFJやクラニシが発表したアンテナアナライザーの最大の特徴は、少々手荒く扱っても壊れにくいというものですから、世界中で普及したと考えられます。 プロが使うVNAなどを同じように扱うとすぐに壊れますので、精度は高いが高価なVNAを選ぶより、せいぜい25Ωくらいから100Ωくらいまでしかカバーしない、ダイオードによる検波方式の方がアマチュア向きなのでしょう。 

出来上がったセンサー基板です。  実際に発振器やマイコンとつないだ時は、若干いじる必要があるかも知れません。

Aasensor3

Aasensor4

その後の検討で、ショットキーダイオードはRB751でも問題があり、最終的にダイオードはSHF用検波ダイオードHSC285に変更しました。 配線図も修正してあります。

センサー部分の配線図をダウンロード

センサー基板が、なんとか完成しましたので、次は広帯域発振器の製作にかかります。

アンテナアナライザーの製作(広帯域発振器) へ続く。

INDEXに戻る