SWR計と高調波
SWR計は送信電力の一部を整流して直流に変換し、その直流で電流計を振らせ、電力の大小を表示させますが、この整流回路は「高調波発生器」でもあります。通常、このメーターに使われる電流は非常に小さい為、高調波の発生があっても、それは無視できるレベルのものであり、色々なSWR計の記事でもほとんど触れた事はありませんでした。
しかし、今回、SWR計の回路設計の中で、ふと、この高調波発生器が気になりだし、高調波レベルを調べてみました。すると、感度の悪いメーターを無理に振らせると、送信機の技術基準をオーバーする高調波を発生させる可能性がある事が判りました。
以下、SWRメーターのDC電流と発生する高調波の実験記です。
下の回路が実験回路です。 トロイダルトランスを使ったCM結合器で、メーターを接続すれば、すぐに進行波電力と反射電力を直読できるように調整してあります。
この状態で、反射電力側は無負荷状態にしておき、進行波電力側には電流計と、この電流を可変できる可変抵抗を付けました。
上記、回路の左側ANT端子には50Ωのダミー抵抗を接続し、右側のTX端子から、10Wの信号を加えます。 50Ωのダミー抵抗の両端から20dB以上のATTを経由してスペアナに接続し、第2高調波のレベルを測ります。 周波数は14MHzと50MHzとしました。
DC電流がゼロ、すなわち、送信機自体が発生する第2高調波レベルは、14MHzで-72dB、50MHzで-62dBでした。この送信機でメーターに流れるDC電流を次第に増加させていくと次の表のような結果が得られました。
R14は1N60にシリーズに入った抵抗です。通常のCM結合器では0Ωに設定されています。14MHzの時は、ベースの高調波も少ない事もあり、2mA取り出しても-60dB以下でしたが、50MHzでは250μA取り出したとき、ちょうど-60dBとなりました。
この状態でR14を500Ωまで大きくすると、14MHzでは、大きな効果は見られませんでしたが、50MHzでは-60dBになるDC電流は500μAまで向上しました。
このトロイダルコアを使ったCM結合器の場合、周波数が高いほど高調波の発生頻度が高くなるようです。 また、その高調波は整流回路のコンデンサに充電するときのピーク電流に関係しているようです。
50MHzに於いて、出力10W時のアンテナへ送り込まれる高調波レベルの限度を-60dBとすると、実験で使った送信機の場合、R14が0Ωのとき、流せる電流は250μAがMAXとなります。送信出力とDC電流の関係は比例関係にあり、出力の電流が2倍になれば、DC電流も2倍までOKとなります。出力を40Wまで上げると、DC電流も500μAまでOKとなると言うことです。
逆に言えば、フルスケール100μAのメーターを使った場合、R14が0Ωでも、1.6Wのパワーでフルスケールになるように定数設定してもOK。R14が500Ωの場合、0.4Wのパワーで測定できるように定数を選んでもOKと言うことになります。
また、今回、トロイダルトランスは16Tで実験しましたが、これを8Tに変えても結果は同じでした。発生する高調波レベルは、トランスの分流比に関係なく、送信出力とDC電流の条件だけで成立するということです。
このCM結合器は2mで使用すると、パワー表示が20%くらいダウンするのですが、145MHzで、R14を0Ωとして、同じようにテストしてみました。
送信機自身の第2高調波レベルが-65dBあり、このレベルが1dB悪化するレベル(-64dB)になるときのDC電流は5mAでした。
高調波の発生は28MHzとか50MHz付近が一番大きいようです。
SWR計を自作する場合、使用する電流計の感度はなるべく高いものを使用する必要があるようです。特に、50MHz用の場合、200μA以上の感度の悪いメーターは避けることと、ダイオードに直列に数百Ωの抵抗をいれるべきでしょう。
また、QRP用のSWR計で、アナログメーターを直接振らせようとするときは、メーター感度には十分注意が必要です。ブリッジ回路を用いた、アンテナアナライザーと同じ原理でSWRを測定する回路なら、通常の送信時には、この整流回路が切り離されますので、最も安全な方法でしょう。
ブリッジ回路による実際の製作例はトロイダルコイルによるアンテナチューナーの内部ロスを参照下さい。